A Short Introduction of Modern Speech Foundation Models

Cardiff NLP Workshop

2nd July 2024

Asahi Ushio

- HP: <u>https://asahiushio.com/</u>
- X: <u>https://x.com/asahiushio</u>
- GitHub: <u>https://github.com/asahi417</u>

About Me

<u>Past</u>

- PhD in NLP at Cardiff University, UK (Oct 2020-Dec 2023)
 - Representation Learning, Question Generation, Social Media
 - Research Internship: Google (MusicLM), Snapchat (Computational Social Science), Amazon (Search Technology).

<u>Now</u>

- Applied Scientist at Amazon, Japan (Jan 2024-)
 - Information Retrieval.
- Research Collaborator at Kotoba Technology, Japan (Mar 2024-)
 - Japanese and English bilingual speech foundation model and its application.

Topics

- Small introduction of speech foundation models
- ToC
 - Basics of audio data
 - Speech foundation model
 - Speech-text downstream tasks
 - Audio tokenizer
 - Representation learning
 - Future works

Audio Data

Audio Signal

• Audio is continuous wave of amplitude over time.

Amplitude

Time

- Digital audio is **quantization** of raw audio.
 - Bit depth (bps): Resolution of each sample.
 - Sampling Rate (Hz): Resolution, N Hz means sampling every 1/N second.

Spectrogram

• Spectrogram is **the power distribution** over different frequency level within a **short time window**.

- The digital audio is referred as **raw audio** in contrast to spectrogram.
- Length of spectrogram is much **smaller** than the raw audio.
- Commonly used as an **input feature** to speech task (speech classification or recognition).

Speech & Text Supervised Tasks

Task	Input	Output
Automatic Speech Recognition (ASR)	Speech (audio)	Transcription (text)
Speech Style Classification	Speech (audio)	Label (text)
S2T translation	Speech (audio)	Translation (text)
Speech-to-speech audio generation (S2S)	Speech (audio)	Speech (audio)
Text-to-speech (TTS)	Transcription (text)	Speech (audio)
S2S translation	Speech (audio)	Translation (audio)

Modelling Speech with LMs

Language Model

• Predict succeeding text given the precedent text.

"Hello, I'm a researcher"

Language Model

- Predict succeeding text given the precedent text.
- Fine-tune on task I/O in text format (text2text).

"Hello, I'm a researcher"

Speech Modelling

Speech Modelling

Speech Modelling

Audio Tokenizer

Audio Tokens

- Audio tokenizer opened up a new direction for audio (speech) modelling.
- Seamless integration of audio to LMs (<u>AudioPaLM</u>, <u>AudioGen</u>).

Audio Tokenizer

- Discrete tokens of lower frequency than the raw audio.
 - **Acoustic** Feature: pitch, noise, accent.
 - **Semantic** Feature: meaning, grammar, bpm, melody.
- Challenges of **Tokenizer**.
 - Audio is mixture of different artifacts: speech, background noise, etc.
 - Seuqnece length can be large.
 - Eg) 320 tokens per second.
- Challenges of **De-tokenizer**.
 - De-tokenizer has to be a generative model of raw audio wave.
 - High fidelity and adhesive to the tokens.

Different Types of Tokenizers

- Neural Codec based Tokenizer: SoundStream, Encodec
 - Model-based audio codec (compression).
 - Encoder (tokenizer) and decoder (de-tokenizer) architecture.
 - Pros: Joint training, Acoustic feature.
 - **Cons:** Lack of semantic feature.
- *Embedding based Tokenizer*: <u>w2vBERT</u>, <u>HuBERT</u>, <u>XLS-R</u>
 - Unsupervised model trained on contrastive loss + α .
 - Tokenizer: clustering embeddings (eg. k-means).
 - Detokenizer: <u>Vocoder</u> trained separately on the audio token.
 - Pros: Semantic feature, Acoustic feature.
 - Cons: Separate training.

Acoustic & Semantic Tokens

- <u>Neural Codec based Tokenizer</u>: <u>SoundStream</u>, <u>Encodec</u>
 - Model-based audio codec (compression).
 - Encoder (tokenizer) and decoder (de-tokenizer) architecture.
 - Pros: Joint training, Acoustic feature.
 - **Cons:** Lack of semantic feature.
- <u>Embedding based Tokenizer</u>: <u>w2vBERT</u>, <u>HuBERT</u>, <u>XLS-R</u>
 - Unsupervised model trained on contrastive loss + α .
 - Tokenizer: clustering embeddings (eg. k-means).
 - Detokenizer: <u>Vocoder</u> trained separately on the audio token.
 - Pros: Semantic feature, Acoustic feature.
 - Cons: Separate training.

Semantic Audio Token

Acoustic Audio

Token

Neural Codec based Tokenizer

- Neural Codec based Tokenizer: SoundStream, Encodec
 - Model-based audio codec (compression).
 - Encoder (tokenizer) and decoder (de-tokenizer) architecture.
 - Pros: Joint training, Acoustic feature.
 - **Cons:** Lack of semantic feature.
- *Embedding based Tokenizer*: w2vBERT, HuBERT, XLS-R
 - Unsupervised model trained on contrastive loss + α .
 - Tokenizer: clustering embeddings (eg. k-means).
 - Detokenizer: <u>Vocoder</u> trained separately on the audio token.
 - Pros: Semantic feature, Acoustic feature.
 - Cons: Separate training.

Neural Audio Codec

- Audio codec is a program to encode/decode high-fidelity audio signal with a minimum number of bits (eg, flac, mp3).
- Neural audio codec is **encoder-decoder neural network** model trained for audio codec.

Discrete Latent Representation

- Neural codec models are built upon <u>VQ-VAE</u>.
- VQ-VAE quantizes the latent space to avoid posterior collapse of VAE.
 - Dictionary learning (codebooks update) + Auto-encoding (VAE)

Vector Quantization

- VQ divides the vector space by *k* centroids with minimum error.
 - To represent *N* data point, VQ needs a codebook with *N* codes.

Not scalable...!

Residual Vector Quantization

- RVQ is VQ with multiple codebooks; each codebook model the residual.
- The *L*-layers RVQ quantize a vector *v* as

$$egin{aligned} RVQ(v) &= [\hat{v}_1, \dots, \hat{v}_L] \ \hat{v}_1 &= Q_1(v) \ \hat{v}_2 &= Q_2(\hat{v}_1 - v) \ \hat{v}_3 &= Q_3(\hat{v}_2 + \hat{v}_1 - v) \ dots \ \hat{v}_L &= Q_L \left(\sum_{i=1}^{L-1} \hat{v}_i - v
ight) \end{aligned}$$

where *Q*^{*I*} is a VQ with *I*-th codebook.

• Later RVQ layers can be ignored in practice (better controllability).

• *RVQ* can represent more bits than VQ with the same number of codes.

• *RVQ* can represent more bits than VQ with the same number of codes.

• *RVQ* can represent more bits than VQ with the same number of codes.

3rd layer RVQ

- *RVQ* can represent more bits than VQ with the same number of codes.
- *L*-layer RVQ with *c* codes = VQ with *cL* codes.

	VQ	RVQ
Total codes	c imes L	c imes L
Data Points	c imes L	c^L

 Image: state stat

3rd layer RVQ

Codebook Interleaving Pattern

- RVQ tokens consists of multiple codes per sample.
- Text token is a single code per sample.

Single-stream Transformer

- High latency: sequence length increase linearly with the RVQ depth.
- Better performance (<u>MusicLM</u>).
- Versatility: Extend pre-trained LM (<u>AudioPaLM</u>).

Multi-stream Transformer

- Input/output multiple tokens in a single time frame (<u>Kharitonov 2022</u>).
- Low latency: no increase of sequence length.
- Potential decrease in quality.
- Not compatible with most text pre-trained LMs.

Multi-stage Models

- An autoregressive transformer for the 1st layer RVQ tokens (AR model).
- Non-autoregressive model to predict the rest RVQ tokens (NAR model).
- Pros: Versatility, Low latency, High quality.
- Cons: High complexity (MLOps).

Embedding based Tokenizer

- Neural Codec based Tokenizer: SoundStream, Encodec
 - Model-based audio codec (compression).
 - Encoder (tokenizer) and decoder (de-tokenizer) architecture.
 - **Pros:** Joint training, Acoustic feature.
 - **Cons:** Lack of semantic feature.
- *Embedding based Tokenizer*: <u>w2vBERT</u>, <u>HuBERT</u>, <u>XLS-R</u>
 - Unsupervised model trained on contrastive loss + α .
 - Tokenizer: clustering embeddings (eg. k-means).
 - Detokenizer: <u>Vocoder</u> trained separately on the audio token.
 - Pros: Semantic feature, Acoustic feature.
 - Cons: Separate training.

Speech Embedding Model

- Contrastive Loss (CL) + Masked Language Modelling (MLM).
- CL: surrounding tokens as the positive examples.
- MLM: predicting the masked token from the contextual embeddings.

<u>HuBERT</u>

XLS-R (Wav2Vec 2.0)

Semantic Tokens

- Apply k-means to obtain discrete tokens (semantic token).
- Train vocoder model (token-to-wave) separately on the semantic tokens.

GSLM (Lakhotia 2021)

- Generative Spoken Language Modelling (GSLM).
- Very first work attempting LM on raw speech without text.

AudioLM (Borsos 2022)

- Multi-stage autoregressive language modelling of acoustic & semantic tokens.
- 1st model: Semantic tokens.
- 2nd model: coarse acoustic tokens.
- 3rd model: fine acoustic tokens.
- Flatten RVQ code pattern.

Semantic modeling	Semantic tokens			
Coarse acoustic modeling	Semantic tokens	Coarse acoustic tokens (from layers 1:Q' of the RVQ)]	SoundStream Decoder
Fine acoustic modeling		Coarse acoustic tokens (from layers 1:Q' of the RVQ)	Fine acoustic tokens (from layers <i>Q'+1:Q</i> of the RVQ)	

MusicLM (Agostinelli 2022)

- AudioLM + Mulan (music and caption joint embedding model)
- Training: Mulan audio embedding + semantic/acoustic token
- Inference: Mulan text embedding + semantic/acoustic token

AudioPaLM (Rubenstein 2023)

- Extend the vocabulary of pre-trained LMs to include acoustic tokens.
- Continuous training on audio & text tasks on language modelling.
- Flatten RVQ code pattern.

AudioGen (Kreuk 2023)

- Language modelling on acoustic tokens.
- Transformer architecture.
- GAN training (discriminator model).
- Text conditioning by cross attention.
- <u>MusicGen (Copet 2023)</u>: Trained on music generation with the similar architecture.

Speech-to-Unit (Lee 2021)

- Direct speech-to-speech translation.
 - Text is used for auxiliary task.
 - HuBERT tokens + Vocoder.
- <u>Textless S2U (Lee 2021)</u>: Remove the intermediate auxiliary loss on text.
- pGSLM (Kharitonov 2022): Encodec RVQ tokens with multi-stream transformer.

SeamlessM4T (2023)

- Multilingual (100 languages) translation model.
- Multimodal: {text->speech, speech->text, text->text, speech->speech}.
- w2vBERT for input feature (not token).
- XLS-R for output tokens + vocoder.

SeamlessExpressiveLM (Gong 2024)

- Expressive S2S translation model.
- Encodec RVQ tokens with multi-stage models.
- HuBERT semantic tokens to control the characteristics of the output speech.

Future Works

Audio Tokenizer

- Better way to integre of **RVQ codes pattern** into LM.
 - Enable to leverage pre-trained models.
 - Low latency.
- The relationship between semantic and acoustic tokens.
- Are tokens better than embedding?
 - Cross-attention (eg. <u>Flamingo</u>) instead of prompting with audio tokens?
- Joint (Neural Codec) vs Independent (Audio Embedding + Vocoder)
- Better quantization than RVQ
 - Finate Scalar Quantization

Speech Representation

- Many speech embeddings (w2vBERT, XLS-R, HuBERT, etc).
 - Which aspect do they represent...?
 - Pitch, Sentiment, Noise, etc.
- Expressive Speech Generation: controllable speech generation
 - <u>SeemlessExpressiveLM</u> conditions the generation on HuBERT tokens.
- Text-speech joint embedding:
 - LASER (<u>SONAR</u>): Speech and Transcription
 - <u>CLAP</u>: Audio and Caption
 - Speech description
 - Eg.) Female speaking slowly with low tone.

Speech Generation

- Voice-cloning
 - Read transcription in the reference voice.
 - Conditioning generation on the speaker embedding.
- Expressive speech generation.
 - Control the characteristic of the generated speech.
 - Sentiment (sad/happy), pitch (gender, age), speed.
- LM probing studies in NLP for S2S foundation model...?
 - CommonSense, Factuality, Relational Knowledge.

