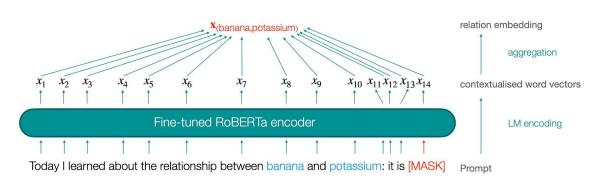
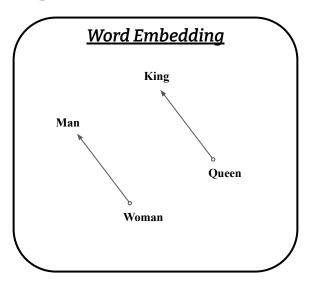
A RelEntLess Benchmark for Modelling Graded Relations between Named Entities

EACL 2024 Main Conference
Asahi Ushio, Jose Camacho-Collados, Steven Schockaert


Cardiff NLP



Relational Knowledge

Capability to understand relationship between two words.

- Word Embedding Mikolov (2013)
- ➤ LMs (eg. GPT-3)
- > RelBERT

Word Analogy

Word analogy as a probing task of relational knowledge.

- Solvable without training.
- Different Levels
 - Primary school to college
- Various Relation Types
 - Named entity, common noun

Query:		word:language
Candidates:	(1) (2) (3) (4) (5)	paint:portrait poetry:rhythm note:music tale:story week:year

Research Question

Word analogies are discriminative.

("Tokyo", "Japan") is <u>capital-of</u>, but ("U.K.", "Japan") is not.

Relations in real-world are often **graded**.

("Amazon", "Google") is more prototypical example of <u>competitor</u> than ("Netflix", "Disney").

Can LMs understand such graded relation?

Graded Relation Ranking

Relation Types	Examples (Ordered by Prototypicality)			
competitor of	[Dell, HP] > [Neoclassicism, Romanticism] > [Steve Jobs, Atlanta]			
friend of	[Australia, New Zealand] > [The Beatles, Queen] > [KGB, CIA]			
influenced by	[Plato, Socrates] > [Hip Hop, Jazz] > [Sauron, Shiba Inu]			
known for	[Apple, iPhone] > [Apple, Apple Watch] > [Pixar, Novosibirsk]			
similar to	[Coca-Cola, Peps] > [Christmas, Easter] > [Italy, Superman]			

New challenging tasks.

- > 5 relation types.
- Pairs of named entities.
- Rank the pairs based on prototypicality.

Results

	competitor	friend	influenced	known	similar	average
Human	<u>75.9</u>	<u>78.0</u>	<u>70.5</u>	82.0	<u>80.2</u>	80.2
FastText	25.0	10.0	7.0	24.0	20.0	17.0
RelBERT	64.0	20.0	20.0	44.0	53.0	40.0
FlanT5	74.0	56.0	44.0	70.0	66.0	62.0
Flan-UL2	79.0	51.0	47.0	67.0	57.0	60.0
GPT3	72.0	39.0	64.0	73.0	47.0	59.0
GPT4	62.5	55.8	35.9	60.8	69.3	56.9

Analysis

- It scales with the model size (bigger models are often better).
- Choice of template matters.
- Few-shot improves most models (except Flan-UL2).
- > Typical error involves
 - Biased by entity domain: "Rihanna" / "Stevie Wonder" for "influenced" (music domain)
 - New relationship: "OpenAI" / "Microsoft"
 - Surface similarity: "New York"/"York"

Thank you!

