Toward a Better Understanding of Relational Knowledge in Language Models

<u>NLPコロキウム</u> 26th January 2022

CARDIFF UNIVERSITY PRIFYSGOL CAERDY

Asahi Ushio Ph.D in Computer Science & Informatics, Cardiff University HP: <u>https://asahiushio.com</u>

<u>About Me</u>

Ph.D at Cardiff University (2020~2023): Jose Camacho-Collados, Steven Schockaert

Internship at Amazon (2021 summer): Danushka Bollegala

Internship at snapchat (2021 winter): Leonardo Nerve, Francesco Barbieri

Projects:

- Relational Knowledge Probing of Language Model (<u>Analogy LM</u>, <u>RelBERT</u>)
- Question Generation (AutoQG)
- Named-Entity Recognition

Funs: Art, Whisky, Dance, Music

Social: <u>Twitter</u>, <u>LinkedIn</u>, <u>GitHub</u>

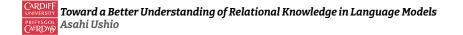
<u>Outline</u>

How much relational knowledge do pre-trained language models have?

- <u>"BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?",</u> <u>ACL 2021</u>

If they have, what is the best way to purify the knowledge from the pre-trained language models?

- <u>"Distilling Relation Embeddings from Pretrained Language Models", EMNLP 2021</u>



1. BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify **Analogies**?

BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?

Asahi Ushio Luis Espinosa-Anke Steven Schockaert Jose Camacho-Collados

<u>ttps://arxiv.org/abs/2105.04949</u>

https://github.com/asahi417/analogy-language-model

Model Analysis

- <u>Hewitt 2019</u>, <u>Tenney 2019</u> \rightarrow The embeddings capture linguistics knowledge.
- <u>Clark 2020</u> \rightarrow The attention reflects dependency.

Factual Knowledge

- <u>Petroni 2019</u> \rightarrow LM can be used as a commonsense KB.

Generalization Capacity

- <u>Warstadt 2020</u> \rightarrow LMs need large data to achieve linguistic generalization.
- $Min 2020 \rightarrow LMs'$ poor performance on adversarial data can be improved by DA.

Can LMs identify analogies?

Why Analogies?

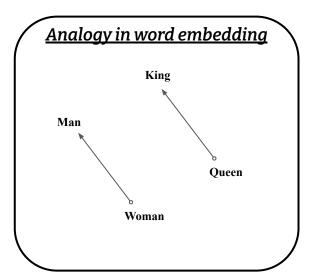
Query:		word:language
Candidates:	 (1) (2) (3) (4) (5) 	paint:portrait poetry:rhythm note:music tale:story week:year

Sample from SAT analogy dataset.

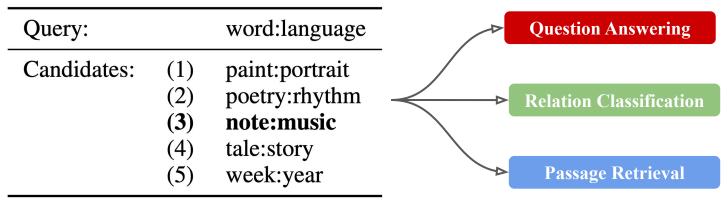
Why Analogies?

Query:		word:language
Candidates:	 (1) (2) (3) (4) (5) 	paint:portrait poetry:rhythm note:music tale:story week:year

Sample from SAT analogy dataset.



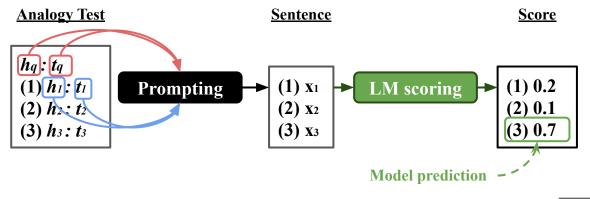
Why Analogies?



Sample from SAT analogy dataset.

ROIFF WESTER BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?

Solving Analogies with LMs



Eg) word:language

(1) paint:portrait \rightarrow word is to language as paint is to portrait \rightarrow Compute perplexity (2) note:music \rightarrow word is to language as note is to music \rightarrow Compute perplexity

Prompt types

Туре	Template
to-as	$[w_1]$ is to $[w_2]$ as $[w_3]$ is to $[w_4]$
to-what	$[w_1]$ is to $[w_2]$ What $[w_3]$ is to $[w_4]$
	The relation between $[w_1]$ and $[w_2]$
rel-same	is the same as the relation between
	$[w_3]$ and $[w_4]$.
what-to	what $[w_1]$ is to $[w_2]$, $[w_3]$ is to $[w_4]$
she-as	She explained to him that $[w_1]$ is
sne-us	to $[w_2]$ as $[w_3]$ is to $[w_4]$
	As I explained earlier, what $[w_1]$ is
as-what	to $[w_2]$ is essentially the same as
	what $[w_3]$ is to $[w_4]$.

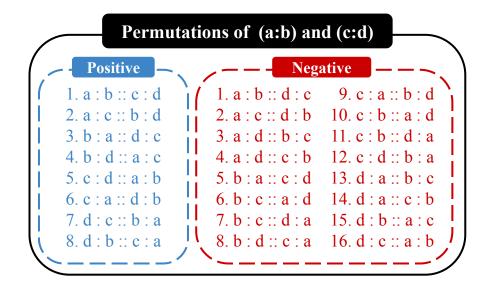
Scoring Functions

- Perplexity (PPL)
- Approximated point-wise mutual information (PMI)
- Marginal likelihood biased perplexity (mPPL)

Permutation Invariance

*Analogical Proportion Score

$$egin{aligned} & AP(h_q,t_q,h_i,t_i) = \mathcal{A}_{g_{ extsf{pos}}}(oldsymbol{p}) - eta \cdot \mathcal{A}_{g_{ extsf{neg}}}(oldsymbol{n}) \ & oldsymbol{p} = [s(a,b|c,d)]_{(a:b,c:d) \in oldsymbol{P}} \ & oldsymbol{n} = [s(a,b|c,d)]_{(a:b,c:d) \in oldsymbol{N}} \end{aligned}$$



eg)

"word is to language as note is to music" = "language is to word as music is to note" "word is to language as note is to music" ≠ "language is to word as note is to music"

Datasets

Dataset	Data size (val / test)	No. candidates	No. groups
SAT	37 / 337	5	2
UNIT 2	24 / 228	5,4,3	9
UNIT 4	48 / 432	5,4,3	5
Google	50 / 500	4	2
BATS	199 / 1799	4	3

BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies? PREVACULA Asahi Ushio, Luis Espinosa-Anke, Steven Schockaert, and Jose Camacho-Collados

		Model	Score	Tuned	SAT	U2	U4	Google	BATS	Avg
<u>Result</u>			SPPL	1	32.9 39.8	32.9 41.7	34.0 41.0	80.8 86.8	61.5 67.9	48.4 55.4
(zeroshot)		BERT		1997 	27.0	32.0	31.2	74.0	59.1	44.7
			s_{PMI}	\checkmark	40.4	42.5	27.8	87.0	68.1	53.2
			S _{mPPL}	\checkmark	41.8	44.7	41.2	88.8	67.9	56.9
			Coor		35.9	41.2	44.9	80.4	63.5	53.2
	I		SPPL	\checkmark	50.4	48.7	51.2	93.2	75.9	63.9
	ΓW	GPT-2	SPMI		34.4	44.7	43.3	62.8	62.8	49.6
				\checkmark	51.0	37.7	50.5	91.0	79.8	62.0
RoBERTa is the best			s_{mPPL}	\checkmark	56.7	50.9	49.5	95.2	81.2	66.7
in U2 & U4 but			SPPL		42.4	49.1	49.1	90.8	69.7	60.2
otherwise FastText				\checkmark	53.7	57.0	55.8	93.6	80.5	68.1
		RoBERTa	S _{PMI}		35.9	42.5	44.0	60.8	60.8	48.8
owns it 🤔			©PMI	\checkmark	51.3	49.1	38.7	92.4	77.2	61.7
			s_{mPPL}	\checkmark	53.4	58.3	57.4	93.6	78.4	68.2
	ш	FastText	-		47.8	43.0	40.7	96.6	72.0	60.0
	WE	GloVe	-		47.8	46.5	39.8	96.0	68.7	59.8
		Word2vec	-		41.8	40.4	39.6	93.2	63.8	55.8
	Base	PMI	-		23.3	32.9	39.1	57.4	42.7	39.1
	Bå	Random	-		20.0	23.6	24.2	25.0	25.0	23.6

BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies? PREVACUAL ASAIN Ushio, Luis Espinosa-Anke, Steven Schockaert, and Jose Camacho-Collados

		Model	Score	Tuned	SAT	U2	U4	Google	BATS	Avg
Result					32.9	32.9	34.0	80.8	61.5	48.4
			s_{PPL}	\checkmark	39.8	41.7	41.0	86.8	67.9	55.4
(tune on val)		BERT	6		27.0	32.0	31.2	74.0	59.1	44.7
			s _{PMI}	\checkmark	40.4	42.5	27.8	87.0	68.1	53.2
			S _{mPPL}	\checkmark	41.8	44.7	41.2	88.8	67.9	56.9
			6 D.D.		35.9	41.2	44.9	80.4	63.5	53.2
	ΓW		SPPL	\checkmark	50.4	48.7	51.2	93.2	75.9	63.9
		GPT-2	SPMI		34.4	44.7	43.3	62.8	62.8	49.6
				\checkmark	51.0	37.7	50.5	91.0	79.8	62.0
BERT still worse 🧐			s_{mPPL}	\checkmark	56.7	50.9	49.5	95.2	81.2	66.7
but			SPPL		42.4	49.1	49.1	90.8	69.7	60.2
RoBERTa & GPT2			JPPL	\checkmark	53.7	57.0	55.8	93.6	80.5	68.1
achieve the best 🤗		RoBERTa	s _{PMI}		35.9	42.5	44.0	60.8	60.8	48.8
acifieve the best 🚰			©PMI	\checkmark	51.3	49.1	38.7	92.4	77.2	61.7
			s_{mPPL}	\checkmark	53.4	58.3	57.4	93.6	78.4	68.2
	Ц	FastText	-		47.8	43.0	40.7	96.6	72.0	60.0
	WE	GloVe	-		47.8	46.5	39.8	96.0	68.7	59.8
		Word2vec	-		41.8	40.4	39.6	93.2	63.8	55.8
	Base	PMI	-		23.3	32.9	39.1	57.4	42.7	39.1
	B	Random	-		20.0	23.6	24.2	25.0	25.0	23.6

BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies? BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies? BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?

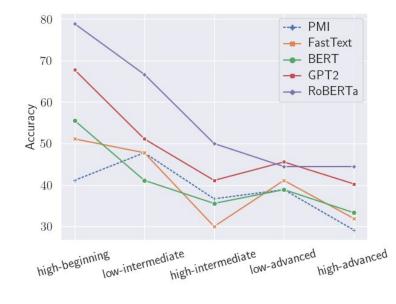
<u>Results</u> (SAT full)

	Model	Score	Tuned	Accuracy
				32.6
		s_{PPL}	\checkmark	40.4*
	BERT	0		26.8
		s_{PMI}	\checkmark	41.2*
		s_{mPPL}	\checkmark	42.8*
		0		41.4
LM -		s_{PPL}	\checkmark	56.2*
	GPT-2	0		34.7
		S _{PMI}	\checkmark	56.8*
		S_{mPPL}	\checkmark	57.8*
	RoBERTa	Gapt		49.6
		SPPL	\checkmark	55.8*
		SPMI		42.5
			\checkmark	54.0*
		s_{mPPL}	\checkmark	55.8*
	GPT-3	Zero-shot		53.7
	01 1-5	Few-shot	\checkmark	65.2*
-	LRA	-		56.4
	FastText	2 m .		49.7
WE	GloVe	-		48.9
	Word2vec	-		42.8
Base	PMI	-		23.3
Base	Random	9 <u>1</u> 0		20.0

CARDIF BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies? Asahi Ushio, Luis Espinosa-Anke, Steven Schockaert, and Jose Camacho-Collados

CAERDY

Difficulty Level Breakdown (U2 & U4)





UNIT 4

UNIT 2

Conclusion

- Some LMs can solve analogies in a true zero-shot setting to some extent.
- Language models are better than word embeddings at understanding abstract relations, but have ample room for improvement.
- Language models are very sensitive to hyperparameter tuning in this task, and careful tuning leads to competitive results.

2. Distilling Relation Embeddings from Pre-trained Language Models

Distilling Relation Embeddings from Pre-trained Language Models

Asahi Ushio Jose Camacho-Collados Steven Schockaert

Syntactic Knowledge

- Probing embedding: <u>Hewitt 2019</u>, <u>Tenney 2019</u>
- Probing attention weight: Clark 2020

Factual Knowledge a.k.a Language Model as a Commonsense KB

- <u>Petroni 2019, Kassner 2020, Jiang 2020, etc</u>

Relational Knowledge a.k.a Language Model as a Lexical Relation Reasoner

- LM fine-tuning on relation classification: Bouraoui 2019
- Vanilla LM evaluation: Ushio 2021

Syntactic Knowledge

- Probing embedding: Hewitt 2019, Tenney 2019
- Probing attention weight: Clark 2020

Factual Knowledge a.k.a Language Model as a Commonsense KB

- <u>Petroni 2019, Kassner 2020, Jiang 2020,</u> etc

Relational Knowledge a.k.a Language Model as a Lexical Relation Reasoner

- LM fine-tuning on relation classification: Bouraoui 2019
- Vanilla LM evaluation: Ushio 2021

Syntactic Knowledge

- Probing embedding: <u>Hewitt 2019</u>, <u>Tenney 2019</u>
- Probing attention weight: Clark 2020

Factual Knowledge a.k.a Language Model as a Commonsense KB

- <u>Petroni 2019, Kassner 2020, Jiang 2020,</u> etc

Relational Knowledge a.k.a Language Model as a Lexical Relation Reasoner

- LM fine-tuning on relation classification: Bouraoui 2019
- Vanilla LM evaluation: Ushio 2021

Can we distil relational knowledge as relation embedding?

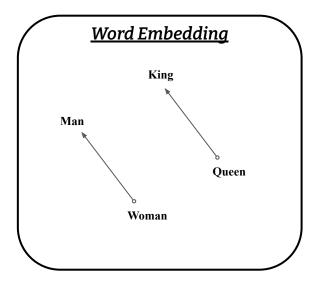
Relation Embedding

Word Embedding <u>Mikolov (2013)</u>

Pair2Vec Joshi (2019)

Relative <u>Camacho-Collados (2019)</u>

X	Y	Contexts				
		with X and Y baths				
hot	cold	too X or too Y				
		neither X nor Y				
		in X, Y				
Portland	Oregon	the X metropolitan area in Y				
	0	X International Airport in Y				
		food X are maize, Y, etc				
crop	wheat	dry X, such as Y,				
1000 0 000 - 000		more X circles appeared in Y fields				
		X OS comes with Y play				
Android	Google	the X team at Y				
	0	X is developed by Y				



RelBERT

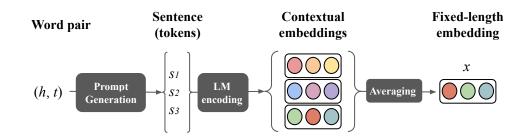
Relation Embedding from LM

Prompt Generation

Custom Template, AutoPrompt (<u>Shin 2020</u>), P-tuning (<u>Liu 2021</u>)

LM embedding

Averaging over the context



Relation Embedding from LM

Prompt Generation

Custom Template, AutoPrompt (Shin 2020), P-tu

LM embedding

Averaging over the context

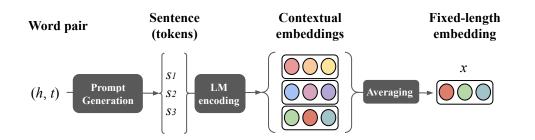
1. Today, I finally discovered the relation between **camera** and **photographer** : **camera** is the <mask> of **photographer**

2. Today, I finally discovered the relation between **camera** and **photographer** : **photographer** is **camera**'s <mask>

3. Today, I finally discovered the relation between **camera** and **photographer** : <mask>

4. I wasn't aware of this relationship, but I just read in the encyclopedia that **camera** is the <mask> of **photographer**

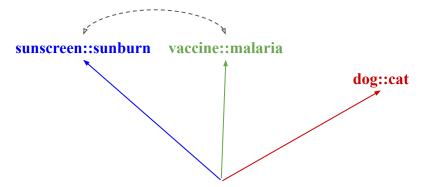
5. I wasn't aware of this relationship, but I just read in the encyclopedia that **photographer** is **camera**'s <mask>



<u>Fine-tuning on Triples</u>

Given a triple: anchor "sunscreen::sunburn", positive "vaccine::malaria", and negative "dog::cat", we want the embeddings of the anchor and the positive close but far from the negative.

Loss function: Triplet loss and classification loss following <u>SBERT (Reimers 2019)</u>.



Fine-tuning on Triples

Given a triple of the anchor x_a (eg. "sunscreen"), the positive x_p (eg. "sunburn"), and the negative x_n (eg. "evil"), the **triplet loss** is defined as

$$L_{t} = \max(0, ||x_{a} - x_{p}|| - ||x_{a} - x_{n}|| + \varepsilon)$$

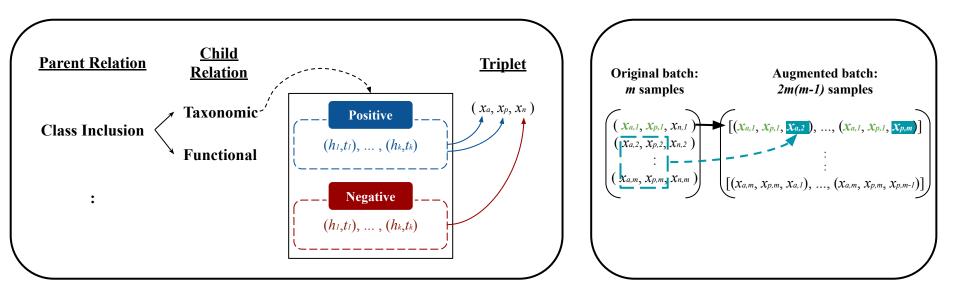
and the **classification loss** is defined as

$$L_c = -\log(g(x_a, x_p)) - \log(1 - g(x_a, x_n))$$
$$g(u, v) = \text{sigmoid}(W \cdot [u \oplus v \oplus |v - u|]^T)$$

where W is a learnable weight. The loss functions are inspired by <u>SBERT (Reimers 2019)</u>.

<u>Dataset</u>

We create the dataset from **SemEval 2012 Task 2**.



EXPERIMENTS

Experiment: Analogy

Query:		word:language
Candidates:	 (1) (2) (3) (4) (5) 	paint:portrait poetry:rhythm note:music tale:story week:year

Sample from SAT analogy dataset.

Dataset	Data size (val / test)	No. candidates	No. groups
SAT	37 / 337	5	2
UNIT 2	24 / 228	5,4,3	9
UNIT 4	48 / 432	5,4,3	5
Google	50 / 500	4	2
BATS	199 / 1799	4	3

Data statistics.

Setup

- Cosine similarity in between embeddings.
- No training.
- Accuracy as the metric.
- No validation.

Experiment: Analogy

SotA in 4 / 5 datasets 🎉

Better t	than tuned	l methods	s on dev set 🦲	2
----------	------------	-----------	----------------	---

Model	SAT†	SAT	U2	U4	Google	BATS
GPT-3 (zero)	53.7	-	-	-	-	-
GPT-3 (few)	65.2*	-	_	-	-	-
RELATIVE	24.9	24.6	32.5	27.1	62.0	39.0
pair2vec	33.7	34.1	25.4	28.2	66.6	53.8
FastText	49.7	47.8	43.0	40.7	<u>96.6</u>	72.0
Analogical Pro	portion	Score ((tuned)			
· GPT-2	57.8*	56.7*	50.9*	49.5*	95.2*	<u>81.2</u> *
· BERT	42.8*	41.8*	44.7*	41.2*	88.8*	67.9*
· RoBERTa	55.8*	53.4*	58. <i>3</i> *	57.4*	93.6*	78.4*
RelBERT						
· Manual	<u>69.5</u>	<u>70.6</u>	<u>66.2</u>	<u>65.3</u>	92.4	78.8
· AutoPrompt	61.0	62.3	61.4	63.0	88.2	74.6
· P-tuning	54.0	55.5	58.3	55.8	83.4	72.1

Experiment: Classification

Setup

- Supervised Task -
- LMs are frozen _
- macro/micro F1 _
- Tuned on dev _

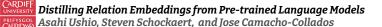
	BLESS	CogALex	EVALution	K&H+N	ROOT09
Random	8,529/609/3,008	2,228/3,059	-	18,319/1,313/6,746	4,479/327/1,566
Meronym	2,051/146/746	163/224	218/13/86	755/48/240	-
Event	2,657/212/955	-	-	-	-
Hypernym	924/63/350	255/382	1,327/94/459	3,048/202/1,042	2,232/149/809
Co-hyponym	2,529/154/882	-	-	18,134/1,313/6,349	2,222/162/816
Attribute	1,892/143/696	-	903/72/322	-	-
Possession	-	-	377/25/142	-	-
Antonym	-	241/360	1,095/90/415	-	-
Synonym	-	167/235	759/50/277	-	-
		Data	ı statistics.		

<u>Experiment:</u> <u>Classification</u>

SotA in 4 / 5 datasets in macro F1 score 🎉

SotA in 3 / 5 datasets in micro F1 score 🎉

N	Model		BLESS		CogALexV		EVALution		K&H+N		ROOT09	
widdei		macro	micro	macro	micro	macro	micro	macro	micro	macro	micro	
GloVe	cat	92.9	93.3	42.8	73.5	56.9	58.3	88.8	94.9	86.3	86.5	
	cat+dot	93.1	93.7	51.9	79.2	55.9	57.3	89.6	95.1	88.8	89.0	
	cat+dot+pair	91.8	92.6	56.4	81.1	58.1	59.6	89.4	95.7	89.2	89.4	
	cat+dot+rel	91.1	92.0	53.2	79.2	58.4	58.6	89.3	94.9	89.3	89.4	
	diff	91.0	91.5	39.2	70.8	55.6	56.9	87.0	94.4	85.9	86.3	
	diff+dot	92.3	92.9	50.6	78.5	56.5	57.9	88.3	94.8	88.6	88.9	
	diff+dot+pair	91.3	92.2	55.5	80.2	56.0	57.4	88.0	95.5	89.1	89.4	
	diff+dot+rel	91.1	91.8	52.8	78.6	56.9	57.9	87.4	94.6	87.7	88.1	
	cat	92.4	92.9	40.7	72.4	56.4	57.9	88.1	93.8	85.7	85.5	
	cat+dot	92.7	93.2	48.5	77.4	56.7	57.8	89.1	94.0	88.2	88.5	
	cat+dot+pair	90.9	91.5	53.0	79.3	56.1	58.2	88.3	94.3	87.7	87.8	
FastText	cat+dot+rel	91.4	91.9	50.6	76.8	57.9	59.1	86.9	93.5	87.1	87.4	
Fastlext	diff	90.7	91.2	39.7	70.2	53.2	55.5	85.8	93.3	85.5	86.0	
	diff+dot	92.3	92.9	49.1	77.8	55.2	57.4	86.5	93.6	88.5	88.9	
	diff+dot+pair	90.0	90.8	53.9	79.0	55.8	57.8	86.6	94.2	87.7	88.	
	diff+dot+rel	90.6	91.3	53.6	78.2	57.1	58.0	86.3	93.4	86.9	87.4	
RelBERT	Manual	91.7	92.1	71.2	87.0	68.4	69.6	88.0	96.2	90.9	91.0	
	AutoPrompt	91.9	92.4	68.5	85.1	69.5	70.5	91.3	97.1	90.0	90.3	
	P-tuning	91.3	91.8	67.8	84.9	69.1	70.2	88.5	96.3	89.8	89.9	
SotA	LexNET		89.3	-	-	-	60.0	-	98.5	-	81.3	
	SphereRE	-	93.8	-	-	-	62.0	-	99.0	-	86.	



ANALYSIS

Relation Memorarization

Does RelBERT just memorize the relations in the training set...?

Experiment: Train RelBERT without hypernymy.

Result: No significant decrease in hyperbyny prediction.

 \rightarrow RelBERT **does not** rely on the memorization!

	BLESS	CogALex	EVAL	K&H+N	ROOT09
rand	93.7 (+0.3)	94.3 (-0.2)	-	97.9 (+0.2)	91.2 (-0.1)
mero	89.8 (+1.4)	72.9 (+2.7)	69.2 (+1.9)	74.5 (+5.4)	
event	86.5 (-0.3)	1812 - 1882 N.	-	-	-
hyp	94.1 (+0.8)	60.9 (-0.7)	61.7 (-1.5)	93.5 (+5.0)	83.0(-0.4)
cohyp	96.4 (+0.3)	~	-	97.8 (+1.2)	97.4 (-0.5)
attr	92.6 (+0.3)	-	84.7 (+1.6)	-	-
poss	-	-	67.1 (-0.2)	-	-
ant		76.8 (-2.6)	81.3 (-0.9)	. 	-
syn	-	49.9 (-0.6)	53.6 (+2.7)	-	-
macro	92.2 (+0.5)	71.0(-0.2)	69.3 (+0.9)	90.9 (+2.9)	90.5 (-0.4)
micro	92.5 (+0.4)	86.9(-0.1)	70.2 (+0.6)	97.2 (+1.0)	90.7 (-0.3)

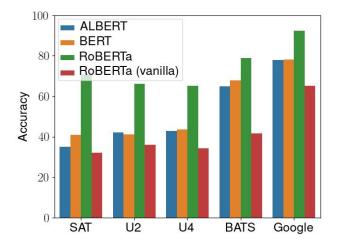
Fine-tuning? Other LMs?

Train RelBERT on BERT, ALBERT in addition to RoBERTa.

 \rightarrow RoBERTa is the best.

Vanilla RoBERTa (no fine-tuning).

 \rightarrow Fine-tuning (distillation) is necessary.



Conclusion

• We propose **RelBERT**, a framework to achieve relation embedding model based on pretrained LM.

• RelBERT distil the LM's relational knowledge and realize a high quality relation embedding.

• Experimental results show that **RelBERT embedding outperform existing baselines**, establishing **SotA in analogy and relation classification**.

Release of RelBERT Library

We release python package **<u>relbert</u>** (install via **pip install relbert**) along with model checkpoints on the hugging face model hub.

Please check our project page <u>https://github.com/asahi417/relbert</u> !!

from relbert import RelBERT
model = RelBERT('asahi417/relbert-roberta-large')
the vector has (1024,)
v_tokyo_japan = model.get_embedding(['Tokyo', 'Japan'])

Nearest Neighbours

Target	Nearest Neighbors
barista:coffee	baker:bread, brewer:beer, bartender:cocktail, winemaker:wine, bartender:drink, baker:cake
bag:plastic	bottle:plastic, bag:leather, container:plastic, box:plastic, jug:glass, bottle:glass
duck:duckling	chicken:chick, pig:piglet, cat:kitten, ox:calf, butterfly:larvae, bear:cub
cooked:raw	raw:cooked, regulated:unregulated, sober:drunk, loaded:unloaded, armed:unarmed, published:unpublished
chihuahua:dog	dachshund:dog, poodle:dog, terrier:dog, chinchilla:rodent, macaque:monkey, dalmatian:dog
dog:dogs	cat:cats, horse:horses, pig:pigs, rat:rats, wolf:wolves, monkey:monkeys
spy:espionage	pirate:piracy, robber:robbery, lobbyist:lobbying, scout:scouting, terrorist:terrorism, witch:witchcraft

Comparing to Word Embeddings

FastText is still better than RelBERT in Google Analogy Question.

Breakdown per relation types shows that FastText is better in the morphological relation, while very poor - in the lexical relation.

Model	Google Mor Sem	BATS Mor Sem Lex
FastText	95.4 98.1	90.4 71.1 33.8
RelBERT	89.8 95.8	87.0 66.2 75.1

Thank You!