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Language Model Understanding
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Syntactic Knowledge
- Probing embedding: Hewitt 2019, Tenney 2019
- Probing attention weight: Clark 2020

Factual Knowledge a.k.a Language Model as a Commonsense KB
- Petroni 2019, Kassner 2020, Jiang 2020, etc

Relational Knowledge a.k.a Language Model as a Lexical Relation Reasoner
- LM fine-tuning on relation classification: Bouraoui 2019
- Vanilla LM evaluation: Ushio 2021

https://www.aclweb.org/anthology/N19-1419.pdf
https://arxiv.org/abs/1905.05950
https://arxiv.org/abs/1906.04341
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1911.03343
https://arxiv.org/abs/1911.12543
https://arxiv.org/abs/1911.12753
https://aclanthology.org/2021.acl-long.280/
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Syntactic Knowledge
- Probing embedding: Hewitt 2019, Tenney 2019
- Probing attention weight: Clark 2020

Factual Knowledge a.k.a Language Model as a Commonsense KB
- Petroni 2019, Kassner 2020, Jiang 2020, etc

Relational Knowledge a.k.a Language Model as a Lexical Relation Reasoner
- LM fine-tuning on relation classification: Bouraoui 2019
- Vanilla LM evaluation: Ushio 2021

Can we distil relational knowledge as relation embedding? 

https://www.aclweb.org/anthology/N19-1419.pdf
https://arxiv.org/abs/1905.05950
https://arxiv.org/abs/1906.04341
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1911.03343
https://arxiv.org/abs/1911.12543
https://arxiv.org/abs/1911.12753
https://aclanthology.org/2021.acl-long.280/


Distilling Relation Embeddings from Pre-trained Language Models
Asahi Ushio, Steven Schockaert,  and Jose Camacho-Collados

Relation Embedding

Word Embedding Mikolov (2013)

Pair2Vec Joshi (2019)

Relative Camacho-Collados (2019)
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King

Queen

Woman

Man

Word Embedding

https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1810.08854
http://josecamachocollados.com/papers/relative_ijcai2019.pdf


RelBERT



Distilling Relation Embeddings from Pre-trained Language Models
Asahi Ushio, Steven Schockaert,  and Jose Camacho-Collados

Prompt Generation
Custom Template, AutoPrompt (Shin 2020), P-tuning (Liu 2021)

LM embedding

Averaging over the context

Relation Embedding from LM
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(h, t)

Word pair Sentence 
(tokens)

Prompt
Generation

Contextual
embeddings

Fixed-length
embedding

LM
encoding

x
Averaging

s1
s2
s3

https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2103.10385
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s3

1. Today, I finally discovered the relation between camera and 
photographer : camera is the <mask> of photographer

2. Today, I finally discovered the relation between camera and 
photographer : photographer is camera’s <mask>

3. Today, I finally discovered the relation between camera and 
photographer : <mask>

4. I wasn’t aware of this relationship, but I just read in the 
encyclopedia that camera is the <mask> of photographer

5. I wasn’t aware of this relationship, but I just read in the 
encyclopedia that photographer is camera’s <mask>

https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2103.10385
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Given a triple: anchor “sunscreen::sunburn”,  positive  “vaccine::malaria”, and 
negative “dog::cat”, we want the embeddings of the anchor and the posirive close but 
far from the negative.

Loss function: Triplet loss and classification loss following SBERT (Reimers 2019).

Fine-tuning on Triples

9

vaccine::malariasunscreen::sunburn

dog::cat

https://arxiv.org/abs/1908.10084
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We create the dataset from SemEval 2012 Task 2.

Dataset
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Class Inclusion

Parent Relation Child 
Relation

Taxonomic

Functional
(h1,t1), ... , (hk,tk)

Positive

(h1,t1), ... , (hk,tk)

Negative:

Triplet

( xa, xp, xn )

:
:

( xa,1, xp,1, xn,1 )
( xa,2, xp,2, xn,2 )

:
( xa,m, xp,m, xn,m ) [(xa,m, xp,m, xa,1), ..., (xa,m, xp,m, xp,m-1)] 

Original batch:
m samples

Augmented batch:
2m(m-1) samples

[(xa,1, xp,1, xa,2 ), ..., (xa,1, xp,1, xp,m)] 

https://aclanthology.org/S12-1047/


EXPERIMENTS
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Experiment: Analogy
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Setup
- Cosine similarity in between embeddings.
- No training.
- Accuracy as the metric.
- No validation.

Sample from SAT analogy dataset. Data statistics.
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Experiment: Analogy
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SotA in 4 / 5 datasets 🎉

Better than tuned methods on dev set 🤗
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Experiment: Classification
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Setup
- Supervised Task
- LMs are frozen
- macro/micro F1
- Tuned on dev

Data statistics.
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SotA in 4 / 5 datasets in 
macro F1 score 🎉

SotA in 3 / 5 datasets in 
micro F1 score 🎉

Experiment: 
Classification

15



ANALYSIS
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Relation Memorarization
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Does RelBERT just memorize the relations in the 
training set… ?

Experiment: Train RelBERT without hypernymy.

Result: No significant decrease in hyperbyny 
prediction.

→ RelBERT does not rely on the memorization!
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Fine-tuning? Other LMs?
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Train RelBERT on BERT, ALBERT in addition to 
RoBERTa.

→ RoBERTa is the best.

Vanilla RoBERTa (no fine-tuning).

→ Fine-tuning (distillation) is necessary.
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Conclusion
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● We propose RelBERT, a framework to achieve relation embedding model based on 
pretrained LM.

 

● RelBERT distil the LM’s relational knowledge and realize a high quality relation 
embedding.

 

● Experimental results show that RelBERT embedding outperform existing 
baselines, establishing SotA in analogy and relation classification.
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Release of RelBERT Library
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We release python package relbert (install via pip install relbert) along with 
model checkpoints on the huggingface modelhub.

Please check our project page https://github.com/asahi417/relbert !!

from relbert import RelBERT
model = RelBERT( 'asahi417/relbert-roberta-large' )
# the vector has (1024,)
v_tokyo_japan = model.get_embedding([ 'Tokyo', 'Japan'])

https://github.com/asahi417/relbert
https://github.com/asahi417/relbert


🌳Thank you!🌳
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Comparing to Word Embeddings
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FastText is still better than RelBERT in Google 
Analogy Question.

Breakdown per relation types shows that FastText is 
better in the morphological relation, while very poor 
in the lexical relation.
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Nearest Neighbours
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Fine-tuning on Triples

Given a triple of  the anchor         (eg. “sunscreen”), the positive        (eg. “sunburn”), and 
the negative        (eg. “evil”), the triplet loss  is defined as

and the classification loss is defined as

where          is a learnable weight. The loss functions are inspired by SBERT (Reimers 2019).
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https://arxiv.org/abs/1908.10084

