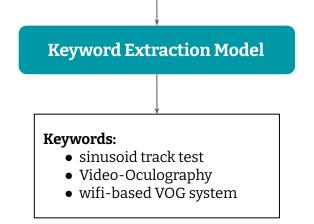
Back to the Basics: A Quantitative Analysis of Statistical and Graph-Based Term Weighting Schemes for Keyword Extraction

Asahi Ushio Federico Liberatore Jose Camacho-Collados

Keyword Extraction


Extracting **keywords** in a document.

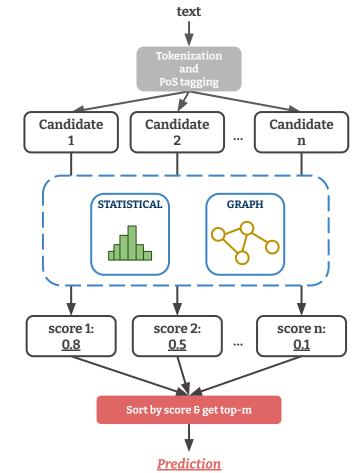
Keyword is a **representative phrase** of the document.

Unsupervised Method > Supervised Method

Input Text (from <u>SemEval2017</u>):

Video-oculography (VOG) is one of eye movement measurement methods. A key problem of VOG is to accurately estimate the pupil center. Then a pupil location method based on morphology and ...

Term-weighting Scheme


Keyword extraction is a **ranking task**.

Pipeline:

- 1. Candidate terms
- 2. Importance score for each term \Rightarrow **Term-weighting Scheme**
- 3. Top-N terms in terms of the score

Statistical vs Graph-based

- Statistics: Term Frequency, TF-IDF
- Graph-based
 - TextRank
 - TopicRank
 - PositionRank

Issues & Our Contribution

No **unified evaluation** in terms of each term-weighting scheme.

Few studies comparing statistical models (**only TF-IDF**).

Issues & Our Contribution

No **unified evaluation** in terms of each term-weighting scheme.

Few studies comparing statistical models (**only TF-IDF**).

Contributions

- 1. Unified evaluation of **11 models** (7 graph-based and 4 statistical model) over **15 public datasets** in English.
- 2. Propose new model class based on lexical specificity (LexSpec, LexRank).
- 3. Propose a simple extension of TextRank with TFIDF (**TFIDFRank**).

Lexical Specificity

What's lexical specificity?

- Hypergeometric distribution based probabilistic model of words from a text given a corpus (Lafon, 1980).
- The probability of a word *t* randomly appears *k* times in a text of size *n* from a corpus of size *N* containing the *word t* exactly *K* times.

Faster than TF-IDF to compute (Camacho-Collados et al. 2016).

Proposed Algorithms

- **LexSpec:** Lexical specificity as the importance score.
- LexRank: TextRank extension with lexical specificity as the bias term.

EXPERIMENTS

Experimental Setup

Datasets: 15 datasets diverse in domain/type.

- English.
- Number of keywords is not fixed.

Metric:

- Precision@5
- Mean Reciprocal Rank (MRR)

Models:

- 7 graph-based models
- 4 statistical models

Data	Size	Domain	Туре		
KPCrowd	500	-	news		
Inspec	2000	CS	abstract		
Krapivin2009	2304	CS	article		
Nguyen2007	209	-	article		
PubMed	500	BM	article		
Schutz2008	1231	BM	article		
SemEval2010	243	CS	article		
SemEval2017	493	-	paragraph		
citeulike180	183	BI	article		
fao30	30	AG	article		
fao780	779	AG	article		
theses100	100	-	article		
kdd	755	CS	abstract		
wiki20	20	CS	report		
www	1330	CS	abstract		

Result (Precision@5)

LexRank & TFIDFRank achieve the best average metric!

		Statistical					Graph-based					
Metric	Dataset	FirstN	TF	Lex Spec	TFIDF	Text Rank	Single Rank	Position Rank	Lex Rank	TFIDF Rank	Single TPR	Topic Rank
	KPCrowd	35.8	25.3	39.0	39.0	30.6	30.5	31.8	32.0	32.1	26.9	37.0
	Inspec	31.0	18.9	31.0	31.5	33.2	33.8	32.7	32.9	33.3	30.4	31.3
	Krapivin2009	16.7	0.1	8.7	7.6	6.6	9.1	14.3	9.7	9.7	7.4	8.5
	Nguyen2007	17.8	0.2	17.2	15.9	13.1	17.3	20.6	18.6	18.6	14.0	13.3
P@5	PubMed	9.8	3.6	7.5	6.7	10.1	10.6	10.1	8.9	8.8	9.3	7.8
	Schutz2008	16.9	1.6	39.0	38.9	34.0	36.5	18.3	38.9	39.4	14.5	46.6
	SemEval2010	15.1	1.5	14.7	12.9	13.4	17.4	23.2	16.8	16.6	12.8	16.5
	SemEval2017	30.1	17.0	45.7	47.2	41.5	43.0	40.5	46.0	46.4	34.3	36.5
	citeulike180	6.6	9.5	18.0	15.2	23.0	23.9	20.3	23.2	24.4	23.7	16.7
	fao30	17.3	16.0	24.0	20.7	26.0	30.0	24.0	29.3	29.3	32.7	24.7
	fao780	9.3	3.2	11.7	10.5	12.4	14.3	13.2	13.2	13.1	14.5	12.0
	kdd	11.7	7.0	11.2	11.6	10.6	11.5	11.9	11.6	11.9	9.4	10.7
	theses100	5.6	0.9	10.7	9.4	6.6	7.8	9.3	10.6	9.1	8.3	8.1
	wiki20	13.0	13.0	17.0	21.0	13.0	19.0	14.0	22.0	23.0	19.0	16.0
	www	12.2	8.1	11.9	12.2	10.6	11.2	12.6	11.6	11.7	10.2	11.2
	AVG	16.6	8.4	20.5	20.0	19.0	21.1	19.8	21.7	21.8	17.8	19.8

Back to the Basics: A Quantitative Analysis of Statistical and Graph-Based Term Weighting Schemes for Keyword Extraction Asahi Ushio, Federico Liberatore, and Jose Camacho-Collados

<u>Result (MRR)</u>

LexRank & TFIDFRank achieve the best average metric.

LexSpec is also competitive.

3		Statistical					Graph-based					
Metric	Dataset	FirstN	TF	Lex Spec	TFIDF	Text Rank	Single Rank	Position Rank	Lex Rank	TFIDF Rank	Single TPR	Topic Rank
	KPCrowd	60.1	45.5	73.6	72.4	62.4	61.6	64.0	65.8	65.2	50.2	60.7
	Inspec	57.3	33.0	52.4	52.8	51.4	52.4	57.1	53.3	53.7	50.5	57.8
	Krapivin2009	36.1	1.3	22.9	21.0	18.1	22.2	31.4	23.6	23.8	19.1	21.8
	Nguyen2007	43.0	2.8	38.1	41.2	30.8	34.6	43.2	36.4	37.9	29.8	33.7
	PubMed	23.1	13.3	23.5	21.4	31.7	30.5	30.6	26.9	26.3	26.0	19.8
	Schutz2008	24.6	8.6	76.6	76.7	68.9	70.9	38.5	75.5	76.3	33.7	67.3
	SemEval2010	49.7	4.5	35.8	34.6	32.9	35.5	47.8	35.3	36.4	28.7	35.9
MRR	SemEval2017	52.0	32.7	68.6	68.7	61.4	63.5	62.4	67.3	67.2	54.3	63.7
MIKK	citeulike180	20.9	23.6	55.5	47.7	58.2	62.6	51.0	63.0	65.7	62.5	40.3
	fao30	31.1	38.3	61.8	49.1	60.2	70.0	48.6	66.1	67.0	74.6	50.6
	fao780	17.0	8.5	39.0	35.9	36.1	38.6	35.9	39.5	38.9	38.4	31.6
	kdd	26.1	13.0	27.0	27.8	24.5	26.5	28.1	27.9	28.8	18.3	26.2
	theses100	15.1	3.1	32.5	31.6	23.2	26.3	24.9	31.6	31.1	26.1	26.9
	wiki20	27.5	27.7	52.7	47.7	40.1	45.7	31.1	52.2	46.5	39.6	35.5
	www	29.7	17.1	30.5	30.6	26.5	27.6	30.4	29.2	30.1	21.7	27.9
	AVG	34.2	18.2	46.0	44.0	41.8	44.6	41.7	46.2	46.3	38.2	40.0

Back to the Basics: A Quantitative Analysis of Statistical and Graph-Based Term Weighting Schemes for Keyword Extraction Asahi Ushio, Federico Liberatore, and Jose Camacho-Collados

<u>Wilcoxon Rank Test</u>

Consider 117,447 documents from all datasets individually.

Wilcoxon rank test results in following groups:

		Method	P@5	MRR
- TFIDFRank		FirstN	18.8	37.1
- LexRank, LexSpec	Charlest and	TF	7.9	16.1
- SingleRank, TFIDF	Statistical	LexSpec	20.8	42.9
- PositionRank, TopicRank		TFIDF	20.5	42.2
- TextRank		TextRank	19.5	39.2
- FirstN - SingleTPR		SingleRank	21.0	41.2
- TF		PositionRank	20.0	40.9
11	Graph-based	LexRank	21.4	42.9
Findings:	_	TFIDFRank	21.6	43.3
δ		SingleTPR	16.4	33.2
- TFIDFRank is the best among the groups.		TopicRank	21.0	40.3
Low Space slightly but consistently outporterms TEIDE		-		

- **LexSpec** slightly but consistently outperforms TFIDF.

Conclusion

• **Proposed new algorithms** (TFIDFRank, LexSpec, and LexRank) and show their efficacy in the experiments.

• Conducted a comprehensive keyword extraction experiments over **15 datasets with 11 models**.

• **Conducted statistical analyses** over the experimental result and provided insights into the performance of each model.

<u>Release of kex Library</u>

We release python package <u>kex</u> (install via **pip install kex**), a keyword extraction library including all the models explained in our paper.

Please check our project page https://github.com/asahi417/kex !! >>> import kex

```
>>> model = kex.SingleRank() # any algorithm listed above
>>> sample = '''
```

We propose a novel unsupervised keyphrase extraction approach th It starts by training word embeddings on the target document to uses the minimum covariance determinant estimator to model the d assumption that these vectors come from the same distribution, i expressed by the dimensions of the learned vector representation detected as outliers of this dominant distribution. Empirical re of-the-art and recent unsupervised keyphrase extraction methods.

```
>>> model.get_keywords(sample, n_keywords=2)
[{'stemmed': 'non-keyphras word vector',
   'pos': 'ADJ NOUN NOUN',
   'raw': ['non-keyphrase word vectors'],
   'offset': [[47, 49]],
   'count': 1,
   'score': 0.06874471825637762,
   'n_source_tokens': 112},
   {'stemmed': 'semant regular word',
   'pos': 'ADJ NOUN NOUN',
   'raw': ['semantic regularities words'],
   'offset': [[28, 32]],
   'count': 1,
   'score': 0.06001468574146248,
   'n_source_tokens': 112}]
```

