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Language Model Understanding

Model Analysis
- Hewitt 2019, Tenney 2019 - The embeddings capture linguistics knowledge.
- Clark 2020 - The attention reflects dependency.

Factual Knowledge
- Petroni 2019 - LM can be used as a commonsense KB.

Generalization Capacity
- Warstadt 2020 - LMs need large data to achieve linguistic generalization.
- Min 2020 - LMs' poor performance on adversarial data can be improved by DA.
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Why Analogies?

Query: word:language
Candidates: (1) paint:portrait
(2) poetry:rthythm
(3) note:music
(4) tale:story
(5) week:year

Sample from SAT analogy dataset.
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Why Analogies?

ﬂnalo in word embeddin \
Query: word:language
Kin;
Candidates: (1) paint:portrait g
(2) poetry:rthythm Man
(3) note:music
(4) tale:story Queen
(5) week:year N
Sample from SAT analogy dataset. k /
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Why Analogies?

Query: word:language Question Answering

Candidates: (1) paint:portrait
(2) poetry:rthythm
(3) note:music
(4) tale:story
(5) week:year

Sample from SAT analogy dataset.
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Solving Analogies with LMs

Analogy Test

Q) hs: b5

Eg) word:language

Prompting

Sentence

1) xa
2) x2
3) xs

(1) 0.2
2) 0.1

Model prediction -

/
-

(1) paint:portrait - word is to language as paint is to portrait -> Compute perplexity
- Compute perplexity

(2) note:music - word is to language as note is to music
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Prompt types
Type Template
to-as [w1] is to [we] as [w3] is to [w4]
to-what  [w1] is to [wa] What [w3] is to [w4]
The relation between [w1] and [w2]
rel-same is the same as the relation between
[ws] and [w4].
what-to  what [w1] is to [wz], [ws] is to [w4]
She explained to him that [w1] is
she-as .
to [we] as [w3] is to [w4]
As I explained earlier, what [w;] is
as-what  to [we] is essentially the same as

what [w3] is to [wy].




Scoring Functions

- Perplexity (PPL)
- Approximated point-wise mutual information (PMI)

- Marginal likelihood biased perplexity (mPPL)
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Datasets

Dataset Data size No. No.
(val / test) candidates groups
SAT 37/ 337 5 2
UNIT2 24/228 54,3 9
UNIT 4 48/432 54,3 5
Google 50/500 4 2
BATS 199/ 1799 4 3
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Model Score Tuned SAT U2 U4 Google BATS Avg

329 329 340 808 615 484
RES ult L v 398 417 410 868 679 55.4
BERT 270 320 312 740 59.1 44.7
zeroshot B v 404 425 278 870 68.1 53.2
SmpPL v 418 447 412 888 679 56.9
soor 359 412 449 804 635 53.2
¥ 504 487 512 932 759 63.9
GPT-2 344 447 433 628 628 49.6
S ¥ 510 377 505 910 798 62.0
RoBERTa is the best SpBL, Y 567 509 495 952 81.2 66.7
: 424 491 491 908 69.7 60.2
il U2. §U4 but “EFL 537 570 558 936 805 68.1
otherwise FastText RoBERTa 359 425 440 608 608 438
owns it & B 513 491 387 924 7712 61.7
Bnpbi, 534 583 574 936 784 68.2
FastText - 478 430 407 96.6 720 60.0
E GloVe - 478 465 398 960 68.7 59.8
Word2vec - 418 404 396 932 638 55.8
2 PMI - 233 329 391 574 427 39.1
m Random - 200 236 242 250 250 23.6
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Results

(SAT full)

Model Score

Tuned Accuracy

o 32.6
v 40.4%
BERT o 26.8
v 41.2%
SmPPL v 42.8*
Hom 41.4
v 56.2*
GPT-2 ‘ 34.7
LM e o 56.8*
SmPPL ve 57.8%
49.6
i 7 55.8*
RoBERTa 42.5
S 7 54.0%
SmPPL v 55.8%
Zero-shot SRR
QL3 Few-shot v 65 2%
- LRA - 56.4
FastText - 49.7
WE GloVe - 48.9
Word2vec - 42.8
Base PMI - 23.3
Random - 20.0
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Conclusion

e Some LMs can solve analogies in a true zero-shot setting to some extent.

e Language models are better than word embeddings at understanding
abstract relations, but have ample room for improvement.

e Language models are very sensitive to hyperparameter tuning in this task,
and careful tuning leads to competitive results.

BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?
Asabhi Ushio, Luis Espinosa-Anke, Steven Schockaert, and Jose Camacho-Collados

13



Thank you!



Story

LM is very good at all downstream tasks
- Recent studies have further confirmed the linguistic semantics encodedin LM in a
various way.
- Also factual knowledge probing shows the capacity of LM
-> what about relational knowledge? Like w2v?
-> we did research on it! The result?
- Very bad
-> With validation set, some LMs outperforms baseline
- CONCLUSION
e Some language model represents relation knowledge
e With carefully tuned method, some LM can achieve very high accuracy (SoTa)
- Future work: prompt mining, supervision
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Language Model Pretraining
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Question Answer Pair

Uniabeled Sentence A and B Pair

Pre-training Fine-Tuning

BERT (Devlin, 2018)

[“translate English to German: That is good."

"cola sentence: The
course is jumping well.”

["stsb sentencel: The rhino grazed

"Das ist gut."

“not acceptable”

on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi..”

T5 (Raffel, 2020)

"six people hospitalized after
a storm in attala county.”
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Text Task

Prediction | Classifier Classification
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Feed Forward
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Masked Multi
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N HR
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Multiple Choice

Text & Position Embed

GPT (Radford, 2018)
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Permutation Invariance

Permutations of (a:b) and (c:d)
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eg)
“word is to language as note is to music” = “language is to word as music is to note”
“word is to language as note is to music” # “language is to word as note is to music”
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Difficulty Level Breakdown (U2 § U4)
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