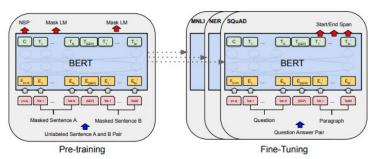
T-NER

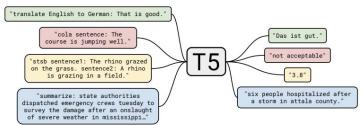
An All-Round Python Library for Transformer-based Named Entity Recognition

Asahi Ushio Jose Camacho-Collados

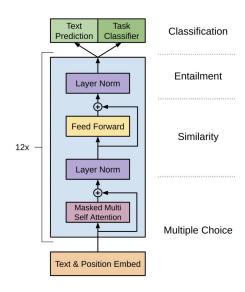
https://github.com/asahi417/tner



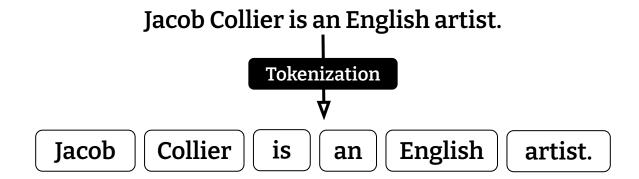
https://pypi.org/project/tner

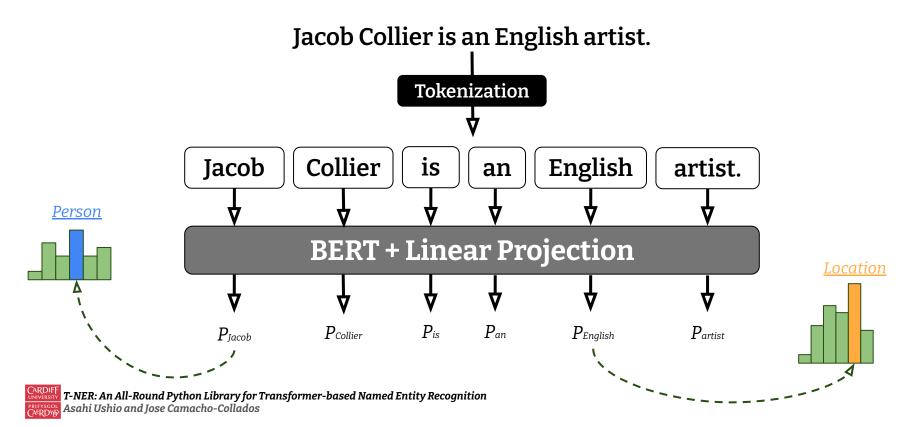


Cardiff University School of Computer Science and Informatics


Language Model Pretraining & Finetuning

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin, Jacob, et al., 2018)

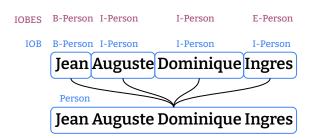

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (Raffel, Colin, et al. 2020)



Improving language understanding by generative pre-training (Radford, Alec, et al., 2018)

Jacob Collier is an English artist.

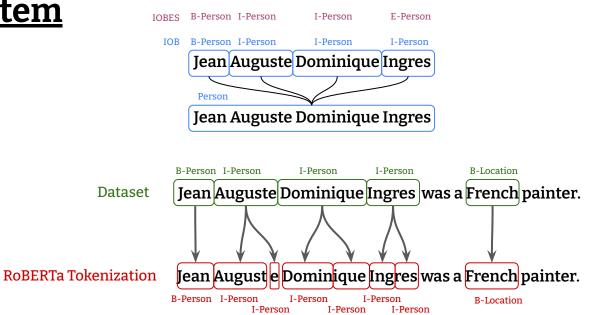
Jacob Collier is an English artist.



Implement NER System

Unify Tagging Scheme

- IOB, IOB2, IOBES, etc


<u>Implement NER System</u>

Unify Tagging Scheme

- IOB, IOB2, IOBES, etc

Fix Sequence Mismatch

Algine label sequence to model tokenization

Implement NER System

Unify Tagging Scheme

- IOB, IOB2, IOBES, etc

Fix Sequence Mismatch

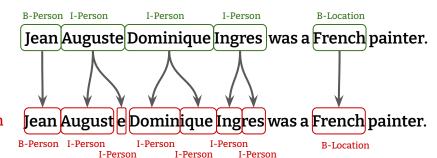
Algine label sequence to model tokenization

Evaluate in Cross-domain

 Dataset specific entity definition IOBES B-Person I-Person I-Person E-Person

IOB B-Person I-Person I-Person I-Person

Jean Auguste Dominique Ingres


Jean Auguste Dominique Ingres

Dataset

RoBERTa Tokenization

BioNLP2004

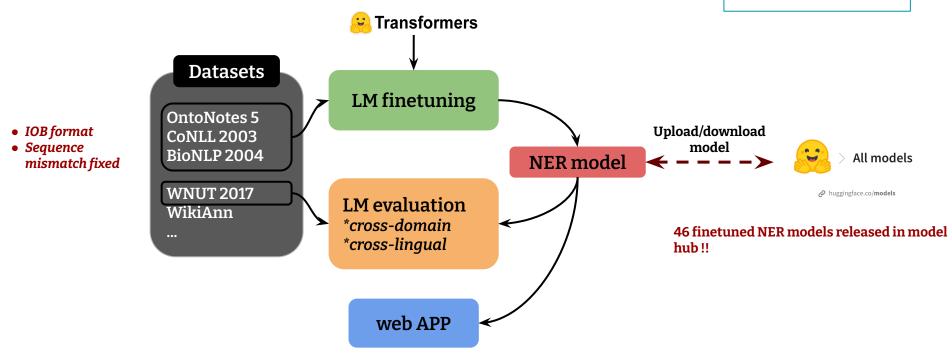
- Protein
- Cell type
- RNA

WNUT2017

- Person
- Corporation
- Creative work

NLP Open Source Softwares

Transformers



T-NER

Overall T-NER Design

Notebook link

- <u>Finetuning</u>
- Evaluation
- Model prediction
- Multilingual NER

Web Application

```
# SETUP
>>> git clone https://github.com/asahi417/tner
>>> cd tner
>>> pip install .

# RUN APPLICATION at http://0.0.0.0:8000/
>>> export NER_MODEL='asahi417/tner-xlm-roberta-large-ontonotes5'
>>> uvicorn app:app --reload --log-level debug --host 0.0.0.0 --port 8000
```

T-NER

model checkpoint: asahi417/tner-xlm-roberta-large-ontonotes5

Insert a text to get prediction

Experimental Results

train\test	ontonotes	conll	wnut	wiki	bionlp	bc5cdr	fin	avg
ontonotes	91.6	65.4	53.6	47.5	0.0	0.0	18.3	40.8
conll	62.2	96.0	69.1	61.7	0.0	0.0	22.7	35.1
wnut	41.8	85.7	68.3	54.5	0.0	0.0	20.0	31.7
wiki	32.8	73.3	53.6	93.4	0.0	0.0	12.2	29.6
bionlp	0.0	0.0	0.0	0.0	79.0	0.0	0.0	8.7
bc5cdr	0.0	0.0	0.0	0.0	0.0	88.8	0.0	9.8
fin	48.2	73.2	60.9	58.9	0.0	0.0	82.0	38.1
all	90.9	93.8	60.9	91.3	78.3	84.6	75.5	81.7

			all			
train	en	ja	ru	ko	es	ar
en	84.0	46.3	73.1	58.1	71.4	53.2
ja	53.0	86.5	45.7	57.1	74.5	55.4
ru	60.4	53.3	90.0	68.1	76.8	54.9
ko	57.8	62.0	68.6	89.6	66.2	57.2
es	70.5	50.6	75.8	61.8	92.1	62.1
ar	60.1	55.7	55.7	70.7	79.7	90.3

Thank you!

