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Abstract—We propose a novel stochastic-optimization frame-
work based on the regularized dual averaging (RDA) method.
The proposed approach differs from the previous studies of
RDA in three major aspects. First, the squared-distance loss
function to a ‘random’ closed convex set is employed for
stability. Second, a sparsity-promoting metric (used implicitly by
a certain proportionate-type adaptive filtering algorithm) and a
quadratically-weighted ℓ1 regularizer are used simultaneously.
Third, the step size and regularization parameters are both
constant due to the smoothness of the loss function. Those
three differences yield an excellent sparsity-seeking property,
high estimation accuracy, and insensitivity to the choice of
the regularization parameter. Numerical examples show the
remarkable advantages of the proposed method over the existing
methods (including AdaGrad and the adaptive proximal forward-
backward splitting method) in applications to regression and
classification with real/synthetic data.

Index Terms—online learning, regularized stochastic optimiza-
tion, orthogonal projection, proximity operator

I. Introduction

Sparse systems are encountered in many applications such

as echo cancellation, channel estimation, text classification,

etc. Here, “sparse” means that the system (Euclidean vec-

tor) contains many (nearly) zero components. Online esti-

mation/learning of sparse systems can be formulated as a

regularized stochastic optimization problem, where the goal

is to minimize the expectation of stochastic loss function

depending on random measurements (samples) penalized by

a regularizer, such as the (weighted) ℓ1 norm when the

sparsity is preferred. We solely consider online scenarios in

which the measurements arrive sequentially, although reg-

ularized stochastic optimization can also be considered in

batch scenarios in general. Stochastic dual averaging [2, 3]

is another popular stochastic-optimization method than the

classical stochastic gradient descent (SGD) method, using

subgradients of loss function. Meanwhile, the metric pro-

jection has been proven to be a powerful tool for adaptive

filtering [4–6] as well as image processing, optics, among

many others [7]. Nevertheless, its power for the stochastic dual
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averaging method still remains uninvestigated. The central

question addressed in the present study is whether the metric

projection also brings any benefits for the stochastic dual

averaging method. To derive a projection-based dual-averaging

method, we employ a squared-distance loss-function which is

smooth. Smoothness of loss function is certainly advantageous

from the optimization point of view, and it allows to use a

constant step size. The use of constant step size actually makes

essential differences (elaborated later on) from the original

dual averaging framework, and it yields high sparsity and high

estimation accuracy simultaneously.

Stochastic dual averaging has its origin in the work of

Nesterov in deterministic settings [2], and it has been extended

to stochastic settings by Xiao [3]. The stochastic version is

called the regularized dual averaging (RDA) method, covering

stochastic optimization problems involving a regularization

term. The follow-the-regularized-leader is a similar approach

to RDA, studied in the context of online convex optimization

[8]. Meanwhile, Duchi and Singer have proposed the so-called

FOBOS algorithm [9], which is an online extension of the

celebrated proximal forward-backward splitting (also known

as proximal gradient) method. It is an efficient solver for

regularized stochastic optimization problems, including SGD

as its special case. RDA typically produces a sparser solution

than FOBOS when a sparsity-enhancing regularizer such as the

ℓ1 norm is involved, because RDA can use a more aggressive

truncation threshold.

The history of using ‘sparseness’ in online algorithms traces

back at least to the work of Makino and Kaneda in 1992

where the exponentially-decaying structure of acoustic echo

path has been incorporated to an adaptive filtering algorithm

[10, 11]. Duttweiller has proposed a related algorithm called

the proportionate least mean square algorithm for acoustic

echo cancellation problems [12–14]. Yukawa, Slavakis, and

Yamada have shown in 2007 that those algorithms can be

interpreted as changing the geometry of the Euclidean space by

means of sparsity-promoting metrics (which vary in time) for

improving the convergence behaviours [15]. The convergence

properties of those algorithms have been studied in [16] under

the framework of the adaptive projected subgradient method

(APSM) [4, 5] with a variable-metric extension. Here, APSM

asymptotically minimizes a sequence of nonnegative convex

functions, and it gives a unified guiding principle of a wide

range of adaptive algorithms including the normalized least

mean square (NLMS) algorithm [17, 18], the affine projection

algorithm (APA) [19, 20], the adaptive parallel subgradient

projection algorithm [4], the multi-domain adaptive filtering

algorithm [21], as well as their constrained counterparts [22].

The variable-metric APSM [16] further includes the transform-
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domain adaptive filter [23–25], the LMS-Newton adaptive

filter [26–28], the quasi-Newton adaptive filter [28–30], and

the Krylov-proportionate adaptive filter [31–33].

Independently from those previous studies in signal pro-

cessing community, a number of variable-metric stochastic-

optimization algorithms have recently been developed, divided

into three categories. The first category is the quasi-Newton

type, including the finite-difference-method-based algorithms

(e.g., SGD quasi-Newton [34], AdaDelta [35], and variance-

based SGD [36, 37]), the extended Gauss-Newton-based al-

gorithms [38–40], and the stochastic limited BFGS (Broyden

Fletcher Goldfarb Shanno) algorithms [41–43]. These algo-

rithms approximate the Hessian matrix efficiently. The second

category is the natural-gradient type [44–46], approximating

the Fisher information matrix. The third category exploits

some metric based on the root-mean-square (RMS) of the his-

tory of the (sub)gradients, including AdaGrad [47], RMSprop

[48], and Adam [49]. The composite objective mirror descent

(COMID) method [50] is a generalization of FOBOS (in a wide

sense), replacing the squared Euclidean distance term by a

Bregman divergence to allow a use of non-Euclidean geometry.

It reduces, for instance, to the exponentiated gradient method

[51] when the Kullback-Leibler divergence is adopted.

Metric projection has played a key role in the success

of many adaptive filtering algorithms [4, 5, 21], including all

the algorithms that are raised above as particular examples

of (variable-metric) APSM. It has also been used in the

study of the adaptive proximal forward-backward splitting

(APFBS) method proposed by Murakami, Yamagishi, Yukawa,

and Yamada for optimizing a sequence of regularized objective

functions [52, 53]. (A short summary of the projection-based

method is given in Section II-C; see [6] for its comprehensive

tutorial). NLMS operates iterative projections onto the zero-

instantaneous-error hyperplanes. It often performs better and is

more stable than the classical least mean square (LMS) algo-

rithm [54], which is a SGD method for the mean squared error

(MSE) function. It is natural to ask whether those projection

and sparsity-promoting metrics studied extensively in signal

processing community are useful in the RDA framework.

In this paper, we propose the projection-based regularized

dual averaging (PDA) method, targeting ‘sparsity-regularized’

stochastic optimization problems primarily. The PDA method

simultaneously exploits both a sparsity-promoting metric

(changing the geometry) and a sparsity-promoting regular-

izer (shrinking the coefficients). This yields a remarkable

sparsity-seeking-property, leading to high accuracy of clas-

sification/regression as well as low evaluation costs for val-

idation data. The regularizer used here is referred to as the

‘quadratically-weighted’ ℓ1 norm, and it is tailored to its

simultaneous use with the sparsity-promoting metric. It is

devised based on the interesting (and perhaps surprising)

observation that the use of the typical weighted/unweighted

ℓ1 regularizer causes undesirable biases by shrinking the large

coefficients to a larger extent than the smaller ones. The

simultaneous use actually yields a certain synergy effect. In

fact, the sole use of the sparsity-promoting metric typically

causes slow convergence in the late learning-phase in return

for fast initial convergence, since it increases the learning

speed of the large coefficients but decreases that of the small

ones. The sparsity-promoting regularizer attracts those small

coefficients to zero, and this alleviates the slow-convergence

issue as well as reducing the estimation variances efficiently

(see Section III-C). Our loss function is the squared metric-

distance to the random closed convex set, where the ran-

domness comes from data/measurements. For instance, the

zero-instantaneous-error hyperplane could be used for re-

gression, and the instantaneous-discrimination-with-sufficient-

margin halfspace for classification. As the loss function is

smooth, PDA employs fixed step-size and regularization pa-

rameters, and this leads to remarkable insensitivity to the

choice of the regularization parameter as shown by simulation.

This makes PDA significantly different from the original

RDA framework, in which the step size needs to diminish

for ensuring convergence for possibly-nonsmooth stochastic

optimization problems.

The major differences of PDA from the original RDA

framework are the use of (cf. Section III-C):

1) the metric projection,

2) the step-size and regularization parameters both fixed in

time, and

3) the sparsity-promoting metric together with the sparsity-

promoting regularizer (the quadratically-weighted ℓ1

norm to be specific).

These differences lead to three practical advantages in stochas-

tic optimization involving sparse structures. First, the use

of the squared-distance function stabilizes the algorithm, as

it avoids such a situation that the gradient vector becomes

undesirably large when some impulsive input arrives. Second,

the simultaneous use of the metric and regularizer guides

the update direction towards the true (sparse) solution and

yields better bias-variance tradeoffs. Third, the use of a fixed

regularization parameter prevents our estimates from becom-

ing undesirably sparse. The efficacy of PDA is shown by

simulations with the MNIST hand-written-digit and RCV text

datasets for classification and with some acoustic signals as

well as synthetic data for linear/nonlinear regression.

The rest of the paper is organized as follows. Section II in-

troduces notation, the formulation of the regularized stochastic

optimization problem, the RDA framework, and the projection-

based methods. Section III presents the proposed method,

its computational complexity for regression and classification,

and the relations to prior works. Section IV presents simulation

results, followed by conclusion in Section V.

II. Preliminaries

Throughout, the sets of real numbers, nonnegative integers,

and positive integers are denoted by R, N, and N∗, respectively.

The standard inner product between w ∈ Rn and z ∈ Rn is

defined as 〈w, z〉 := wT z, where the superscript (·)T stands for

transpose. The Euclidean norm of w ∈ Rn is denoted by ||w|| :=√
〈w,w〉. Given a positive definite matrix Q ∈ Rn×n, the Q inner

product between w ∈ Rn and z ∈ Rn is defined as 〈w, z〉Q :=

wTQz. The Q-norm is defined as ||w||Q :=
√

〈w,w〉Q. For a

differentiable convex function f : Rn → R, a vector ∇Q f (w) ∈
R

n is called the Q-gradient of f at w if
〈

z − w,∇Q f (w)
〉

Q
+
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f (w) ≤ f (z) for any z ∈ Rn. The identity matrix is denoted by

I. The ordinary gradient operator ∇I is denoted simply by ∇.

An operator T : Rn → Rn is said to be Lipschitz continuous

if there exists a constant µ > 0 such that ||T (x) − T (y)||Q ≤
µ ||x − y||Q for all x, y ∈ Rn.

A. Problem Formulation

The regularized stochastic optimization problems consid-

ered in this paper are stated as follows:

min
w∈Rn
Ez

[

ϕ(w, z)
]

+ ψ(w), (1)

where Ez stands for expectation with respect to the input-

output pair z := (x, y) ∈ Rn × R drawn from an unknown

underlying distribution, and the loss function ϕ(w, z) and the

regularizer ψ(w) are both assumed convex. A typical role of

the regularizer ψ(w) is promoting the sparsity of solution,

and it is our primal interest in the present study as well.

As the expectation is unavailable in practice, we consider the

following empirical loss at each time instant t ∈ N penalized

by the time-dependent regularizer ψt(w):

min
w∈Rn

1

t

t∑

τ=1

[

ϕτ(w)
]

+ ψt(w), (2)

where ϕτ(w) := ϕ(w, zτ) with the observation zτ := (xτ, yτ) ∈
R

n×R of z at time τ = 1, 2, · · · , t. Here, the time-dependency of

ψt(w) is for suppressing an undesirable increase of estimation

biases, as will be clarified in Section III. The weight vector

(the coefficient vector) at an arbitrary time τ is denoted by

wτ := [wτ,1,wτ,2, · · · ,wτ,n]T ∈ Rn.

B. Regularized Dual Averaging

The stochastic dual averaging method seeks to solve (1)

efficiently for ψ = 0, and it is based on the following

formulation1 [2]:

min
w∈Rn

lt(w) :=
1

t

t∑

τ=1

[

ϕτ(wτ) + 〈∇ϕτ(wτ),w − wτ〉
]

subject to h(w) ≤ D, (3)

where h(w) is a strongly-convex continuous function (a prox-

function), and D > 0. The role of h(w) is changing the

geometry of space, and a typical, and also simplest, choice is

h(w) := ||w||2 /2. The function lt(w) is called the lower linear

model, and it is actually an average of the affine minorants of

ϕτ(w). The dual averaging update is given by

wt : = arg min
w∈Rn

(

lt(w) +
βt

t
h(w)

)

= arg min
w∈Rn

(〈

sI
t

t
,w

〉

+
βt

t
h(w)

)

, (4)

where (βτ)
t
τ=1
∈ [0,∞) is a nonnegative and non-decreasing

sequence, and

sI
t :=

t∑

τ=1

∇ϕτ(wτ). (5)

1In the original paper [2], a time-invariant function was used in place of
ϕτ since deterministic optimization was considered there.

Here, (βτ)
t
τ=1

wants to satisfy limt→∞ βt/t = 0 so that the

impact of h(w) diminishes as t → ∞.

In the RDA framework, the regularizer is considered to be

time-invariant, i.e., ψt := ψ for all t = 1, 2, · · · , and an update

equation is given as [3]

wt := arg min
w∈Rn

(〈

sI
t

t
,w

〉

+
βt

t
h(w) + ψ(w)

)

. (6)

C. Projection-based Method

We consider the unregularized case (i.e., the case of ψt := 0).

For a time-variant positive definite matrix Qt, the Qt-metric

distance from an arbitrary point w ∈ Rn to a closed convex

set Ct ⊂ Rn is defined as dQt
(w,Ct) := min

z∈Ct

||w − z||Qt
.

A projection-based method typically employs the squared-

distance loss function2 [4–6, 15, 16, 21]:

ϕt(w) :=
1

2
d2

Qt
(w,Ct). (7)

The squared-distance loss is common to both regression and

classification. The design of the set Ct is task-dependent (see

Section III-B). The Qt-gradient of ϕt at the previous point

wt−1 ∈ Rn is given by

gt := ∇Qt
ϕt(wt−1) = wt−1 − P

Qt

Ct
(wt−1), (8)

where P
Qt

Ct
(w) := arg min

z∈Ct

||w − z||Qt
is the Qt-projection of w

onto Ct. The SGD update is given by

wt := wt−1 − ηgt, η > 0. (9)

The projection-based method enjoys two major advantages.

The first advantage is that the step size tuning is simple

because of the nonexpansivity (i.e., the Lipschitz continuity

with constant 1) of the gradient operator ∇Qt
ϕt : Rn → Rn

in the Qt-norm sense. Indeed, the allowed step-size range is

simply given by η ∈ [0, 2], whereas the upper bound in the

case of the ordinary least-square (squared errors) loss

ϕLS
t (w) :=

(

yt − wTxt

)2
/2 (10)

depends on the eigenvalues of the input autocorrelation matrix.

The second advantage is numerical stability (robustness

against impulsive inputs). To illustrate this, let us consider

the hyperplane

Ct :=
{

w ∈ Rn | wTxt = yt

}

, (11)

which is widely used for online regression (or adaptive fil-

tering). Here, xt ∈ Rn is the input vector at time instant t,

yt := wT

∗ xt + νt ∈ R is the output with the unknown vector

w∗ := [w∗,1,w∗,2, · · · ,w∗,n]T ∈ Rn and the additive noise νt ∈ R.

In this case, the squared-distance function in (7) reduces to the

normalized least-square loss

ϕNLS
t (w) :=

(

yt − wTxt

)2

2
∣
∣
∣

∣
∣
∣Q−1

t xt

∣
∣
∣

∣
∣
∣
2

Qt

, w := [w1,w2, · · · ,wn]T ∈ Rn. (12)

2Although it is irrelevant to the current work, the parallel projection was
employed in the previous works [4–6, 15, 16, 21] to accelerate the convergence
efficiently.
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−∇ϕLS
t (w)

−∇ϕNLS
t (w)

−∇Qt
ϕNLS

t (w)
w∗

normalization

variable-metric

w2

w1

w

Fig. 1: Anti-gradients for an impulsive input vector.

TABLE I: PDA algorithm.

Requirements: λ > 0, η ∈ [0, 2], α ∈ [0, 1], ǫ > 0
(r ∈ N∗, δ > 0 for regression ⊲Section III-B)

Initialization: s0 := 0 ∈ Rn and w0 := 0 ∈ Rn.
Iteration: For t = 1, 2, · · ·
1. gt := wt−1 − P

Qt

Ct
(wt−1) ⊲ See (22) or (25).

2. st := st−1 + gt

3. wt := prox
Qt

ψt
(−ηst) ⊲ See (16) with ωt,i := q2

t,i
.

4. Update Qt ⊲ See (14).

Figure 1 illustrates three anti-gradient vectors: −∇ϕLS
t (w),

−∇ϕNLS
t (w), and −∇Qt

ϕNLS
t (w). The gradient ∇ϕLS

t (w) is sensi-

tive to impulsive inputs, and this causes instability. In contrast,

∇ϕNLS
t (w), and ∇Qt

ϕNLS
t (w) are robust to impulsive inputs due

to the presence of the normalization factor. The metric Qt, in

addition, guides the update direction towards the optimal point

w∗, leading to convergence acceleration. To see it, we inspect

the Qt-projection for the specific Ct given in (11):

P
Qt

Ct
(wt−1) := wt−1 −

wTxt − yt
∣
∣
∣

∣
∣
∣Q−1

t xt

∣
∣
∣

∣
∣
∣
2

Qt

Q−1
t xt. (13)

The update direction here is given by Q−1
t xt (or −Q−1

t xt), while

the ordinary SGD update direction is given by xt (or −xt).

This means that the update direction is changed by the inverse

matrix Q−1
t when the Qt-metric is adopted. Intuitively, when

w∗ is sparse and |w∗,1| ≫ |w∗,2|, the step size in the w1 direction

needs to be larger than that in the w2 direction, provided that

w0 := 0. In this case, by allocating a larger step size to w1

than w2, or in other words by letting Qt := diag(q1, q2) with

0 < q1 ≪ q2 (⇔ q−1
1
≫ q−1

2
> 0), a better direction of update

can be obtained.

III. Projection-based Regularized Dual Averaging

The proposed PDA framework is presented in Section III-A.

Under the use of a sparsity-promoting metric, an adequately-

weighted ℓ1-norm is devised that enhances sparsity without

causing serious biases. The complexity of PDA for regression

and classification is discussed in Section III-B. The advantages

of PDA and its relation to RDA are discussed in Section III-C,

and the relations to the other prior works (projection-based

methods, AdaGrad [47], and APFBS [52, 53]) are discussed

in Section III-D.

A. Proposed Method

The proposed method employs some sparsity-promoting

metric. Recalling the arguments in Section II-C, one may

want to use Q̃t :=
(

diag(|wt−1,1|, |wt−1,2|, · · · , |wt−1,n|) + ǫI
)−1

,

assuming that wt−1 well approximates w∗, where the small

constant ǫ > 0 prevents devision by zero. The metric

Qt := diag(qt,1, qt,2, · · · , qt,n) = αI + (1 − α)
nQ̃t

traceQ̃t

(14)

is based on the so-called metric-combining technique [55, 56],

and it gives a better performance in practice, where α ∈ [0, 1].3

See Section III-C for discussions about the metric.

Let us consider the use of a weighted ℓ1 regularizer:

ψωt (w) := λ

n∑

i=1

ωt,i|wi|, (15)

where λ > 0 is the regularization parameter, and ωt,i > 0 is

the weight assigned to wi at time t. The Qt-proximity operator

of ψωt (w) in (15) is then given by

prox
Qt

ψωt
(w) := arg min

z∈Rn

(

ψωt (w) +
1

2
||w − z||2Qt

)

=

n∑

i=1

eisgn(wi)
[

|wi| − ωt,iq
−1
t,i λ

]

+
, (16)

where {ei}ni=1
is the standard basis of Rn, sgn(·) is the signum

function, and [·]+ := max{·, 0} is the hinge function.

Let us see how the proximity operator behaves when

ωt,i := 1 for all i = 1, 2, · · · , n for a given time instant t; this is

the case of the unweighted ℓ1 norm ||w||1 :=
∑n

i=1 |wi|. In this

case, a simple inspection of (16) implies that the proximity

operator shrinks the larger components to a larger extent than

the smaller ones, because q−1
t,i

is an increasing function of

|wt−1,i|. This actually causes undesirable biases. To mitigate

the biases, we propose to use the following ‘quadratically-

weighted’ ℓ1 regularizer (ωt,i := q2
t,i

):

ψt(w) = λ ||w||Q2
t ,1

:= λ

n∑

i=1

q2
t,i|wi|. (17)

In this case, we have ωt,iq
−1
t,i
= qt,i (which is a decreasing

function of |wt−1,i|).4 As a result, the large components are

kept less distorted, while the small components are attracted

to zero efficiently. In the extreme case of α := 1, the metric

reduces to the Euclidean one Qt = I and the regularizer ψt to

the ordinary ℓ1 norm (up to a constant).

To understand the relation between the metric and the

proximity operator intuitively, we illustrate in Figure 2 the

unit balls for the three norms: ||w||1, ||w||Qt ,1 :=
∑n

i=1 qt,i|wi|,
and ||w||Q2

t ,1
. Figure 2a shows that ||w||Qt ,1 (or ||w||Q2

t ,1
) gives a

‘fat’-shaped unit ball. This means that a large |w1| and some

3The metric-combining idea appearing in (14) is different from that of
the improved proportionate NLMS algorithm [57] which uses the matrix
(QIP

t )−1 := αIP I + (1 − αIP)nQ̃−1
t /traceQ̃−1

t , αIP ∈ (0, 1), essentially. It has

been shown in [56] that Qt in (14) is more controllable than QIP
t in the sense

that, as the parameter α (or αIP) changes gradually, the performance changes
gradually as well.

4In our previous work in [58], we studied ω
prev

t,i
:= ω̃t,i/(

∑n
j=1 ω̃t, j) in the

APFBS framework under the standard Euclidean metric (which is equivalent
to Qt := 1

n
I), where ω̃t,i := (|wt−1,i |1−p + ǫ)−1 with ǫ > 0 and p ∈ (0, 1), and

p = 0 gave the best performance (see also [59–61]). In the present case, the
particular choice of α := 0 makes ωt,iq

−1
t,i
= qt,i = ω

prev

t,i
for p = 0. This is the

reason behind the adoption of the quadratic weights in (17).



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

||w||1

||w||Qt,1||w||Q2
t ,1

w1

w2

w∗

(a) (R2 , 〈·, ·〉)

||w||1

||w||Qt,1
||w||Q2

t ,1

w2

w1

w∗

(b) (R2, 〈·, ·〉Qt
)

Fig. 2: Unit weighted-ℓ1-balls under different geometries.

small |w2| takes the same penalty. Hence, compared to ||w||1,

the use of ||w||Qt ,1 (or ||w||Q2
t ,1

) permits large components to

stay large. Let us turn our attention to Figure 2b. One can see

that, in the Qt geometry, the unit ball associated with ||w||Qt ,1

is a square and no longer ‘fat’-shaped. On the other hand, the

quadratically-weighted ℓ1 norm ||w||Q2
t ,1

still possesses a ‘fat’

shape, thereby avoiding the undesirable biases.

For the initial vector w0 := 0, the proposed method is given

as follows:

wt : = arg min
w∈Rn

(

〈ηst,w〉Qt
+

1

2
||w||2Qt

+ ψt(w)

)

= arg min
w∈Rn

(

ψt(w) +
1

2
||w + ηst ||2Qt

)

= prox
Qt

ψt
(−ηst), t ∈ N, (18)

where η ∈ [0, 2] and

st :=

t∑

τ=1

gτ (= st−1 + gt), t ∈ N. (19)

Here, we let s0 := 0. The proposed PDA method is summa-

rized in Table I. More discussions are left to Section III-C.

B. Computational Complexity

The computational complexity (the number of multiplica-

tions per iteration) of each operation of the PDA method

is given as follows: nr for the error calculations, nr2 for

the input normalization, r2 + nr for the wt updates, 2n for

the proximity-operator calculations, and another 2n for the

metric calculations. The whole per-iteration complexity is

actually governed by that of P
Qt

Ct
(wt−1), and it is O(n) as long

as the set Ct is sufficiently simple. The design of Ct (and

TABLE II: Computational complexity.

Algorithms number of multiplication

PDA, APFBS 4n + 3nr + nr2 + r2 (O(n) if r = 1)
RDA, AdaGrad, and FOBOS O(n)

hence the complexity of PDA) depends on tasks as mentioned

already, and more detailed discussions are given below for the

regression and classification cases.

1) Regression case: We define the linear variety

Ct := arg min
w∈Rn

(XT

t w − yt)
T(XT

t w − yt), (20)

where Xt := [xt xt−1 · · · xt−r+1] ∈ R
n×r and yt :=

[yt, yt−1, · · · , yt−r+1]T ∈ Rr for some r ∈ N∗. The squared-

distance function reduces to

ϕt(w) =
1

2
[X
†
t (XT

t w − yt)]
TQ−1

t X
†
t (XT

t w − yt), (21)

and the Qt-projection is given by

P
Qt

Ct
(wt−1) = wt−1 − Q−1

t X
†
t (XT

t wt−1 − yt), (22)

where X
†
t is the Moore-Penrose pseudo-inverse. In practice,

X
†
t is replaced by Xt(XT

t Q−1
t Xt + δI)−1, where δ > 0 is the

regularization parameter for numerical stability. For r = 1, Ct

reduces to the hyperplane defined in (11).

The overall complexity for the regression case is (r2 + 3r +

4)n + r2, which is the same as APFBS. In the particular case

Qt = I, the complexity of PDA is reduced to (r2+2r+1)n+r2.

Since r is typically small (r = 1 or r = 2 in our simulations),

the complexity is O(n) basically.

2) Classification case: We define the halfspace

Ct :=
{

w ∈ Rn | ytw
Txt ≥ 1

}

, (23)

where yt ∈ {−1, 1} (xt , 0 is assumed here). The squared-

distance function in (7) then reduces to

ϕt(w) =

([

ytw
Txt − 1

]

+

)2

2
∣
∣
∣

∣
∣
∣Q−1

t xt

∣
∣
∣

∣
∣
∣
2

Qt

. (24)

The Qt-projection onto Ct is given in this case by

P
Qt

Ct
(wt−1) = wt−1 −

[

1 − ytw
T

t−1
xt

]

+

yt

∣
∣
∣

∣
∣
∣Q−1

t xt

∣
∣
∣

∣
∣
∣
2

Qt

Q−1
t xt. (25)

The overall complexity for the classification case is 8n + 1

(4n+1 in the particular case of Qt = I). The other regularized

stochastic optimization methods such as AdaGrad, RDA, and

FOBOS also have O(n) complexity.

C. Advantages of PDA: Relation to RDA

The RDA framework in (6) can be rewritten as

wt := arg min
w∈Rn





〈

1

βt

st,w

〉

+ h(w) +
t

βt

ψ(w)



 . (26)

Here, 1/βt can be regarded as the step size, and t/βt governs

the strength of the regularization. For comparison, we consider

the ordinary ℓ1 regularizer ψ(w) := λ ||w||1 := λ
∑n

i=1 |wi| for
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PDA
RDA

· Loss function

- hinge

- least square

- logistic

· Variable metric &

variable regularizer

· Fixed reg. parameter &

constant step size

· Problem setting: ψt := 0

· RDA: Sq. distance loss &

βt := 1/η

· PDA: Qt := I (⇐ α := 1)

Fig. 3: A relation betwen RDA and PDA (ψt , 0⇒ RDA , PDA).

some fixed λ > 0. In the RDA framework, an increasing

sequence (βτ)
∞
τ=1

needs to be used so that the step-size se-

quence (1/βτ)
∞
τ=1

diminishes, since possibly nonsmooth loss

functions are considered [3]. The typical choice βt =
√

t/η

for some η > 0 makes t/βt = η
√

t ∼ O(
√

t), which means

that the strength of regularization increases at the rate of

O(
√

t). In the present study, on the other hand, there is no

need to use diminishing step size, since our loss function is

smooth. The use of constant step size 1/βt = η, however,

makes t/βt = ηt ∼ O(t), which increases linearly in t. As a

result, the regularization becomes strong much faster than the

case of diminishing step size, and thus the performance of

RDA deteriorates severely unless the regularization parameter

λ is tuned carefully. Indeed, the performance of RDA with

constant step size is sensitive to the choice of λ, as shown in

Section IV-A.

The key ideas and major advantages of the proposed PDA

method are summarized as below.

a) The use of the squared-distance function given in (7)

leads directly to the projection used in PDA. It enables

to use constant step size and also brings robustness to

impulsive inputs (stable learning), as mentioned already

in Section II-C.

b) The quadratically-weighted ℓ1 regularizer avoids the un-

desirable biases under the use of the sparsity-promoting

metric, as elaborated in Section III-A. We emphasize

here that PDA employs two sparsity-aware techniques

(i.e., the metric and the regularizer) simultaneously.

The metric accelerates the (initial) convergence but

unchanges the optimal point indeed. Meanwhile, the

regularizer seeks to decrease the MSE by reducing the

estimation variance at the price of a slight increase of

the estimation bias. The proposed method benefits from

both. The sparsity-promoting metric actually encourages

the learning of those coefficients with large magnitudes

but discourages the learning of those with small magni-

tudes. This causes slow convergence at the final learning

phase, and the parameter α introduced in (14) alleviates

such a negative effect. In addition, the regularizer attracts

those minor coefficients to zero, and thus the slow-

convergence issue is expected to be resolved.

c) Under the use of constant step size, the regularization

parameter λ is also constant in the proposed PDA

framework, in contrast to the case of RDA for which the

regularization parameter increases linearly in time (see

the paragraph under (26)). Due to the constancy of the

regularization parameter, the performance of the PDA

method is insensitive to the choice of the regularization

parameter, as demonstrated in Section IV-A.

d) The PDA method is free from accumulation of the

shrinkage effects, as opposed to APFBS and FOBOS

(see Section III-D for more details). This remarkable

property comes directly from the fact that PDA is based

on the dual-averaging framework.

Items a) – c) above are the major differences from RDA,

while item d) is common to PDA and RDA. The PDA

and RDA frameworks are disjoint basically, as long as the

regularization term exists (as long as ψt , 0). In the case of

ψt = 0, PDA for Qt := I coincides with RDA applied to the

squared-distance loss with βt := 1/η. See Figure 3.

D. Relations to Other Prior Works

The relations to APFBS, AdaGrad, and the projection-based

method are discussed below.

1) APFBS: PDA has a clear advantage in performance over

APFBS, as elaborated below. The APFBS iterate [52, 53] (for

date-reusing factor 1) is given by wt := prox
Qt

ηψt
(wt−1 − ηgt).

Figure 4 illustrates the difference between APFBS and PDA.

One can see that APFBS performs the proximity operator

many times, and its accumulation may cause a serious increase

of estimation biases. Thus, APFBS has a tradeoff between the

sparsity of the obtained solution and the estimation accuracy,

depending on the strength of regularization. In contrast, PDA

is free from such an accumulation issue, and hence it can

achieve high estimation-accuracy and a high sparsity-level

simultaneously. The FOBOS algorithm [9] resembles APFBS,

but it considers the ordinary loss functions.

APFBS reduces to the projection-based method (9) in the

absence of the regularization term (i.e., ψt := 0, or equivalently

λ := 0). For the particular choice of Ct in (20) for regression,

(9) reproduces the proportionate affine projection algorithm

(PAPA) [14, 62]. In the particular case of r = 1, it reproduces

the (improved) proportionate NLMS (PNLMS) algorithms [12,

13, 63]. If the metric is Euclidean, PAPA and PNLMS reduces

to APA and NLMS, respectively. In the classification case, (9)

with (23) reproduces the passive aggressive algorithm [64].
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(b) PDA (or RDA)

Fig. 4: Illustrations of APFBS and PDA.

TABLE III: Differences among several algorithms.

Principle Loss Metric Regularizer

AdaGrad- DA ordinary ave. grad. ℓ1 (fixed)
RDA loss (variance ↓ )

APFBS SGD squared proportionate weighted ℓ1

distance (sparsity ↑)
PDA DA squared proportionate quad.-weighted ℓ1

distance (sparsity ↑)

2) AdaGrad: AdaGrad [47] is one of the celebrated online

learning methods in machine learning, employing a different

metric for a different purpose from the one employed by

PDA. The idea of AdaGrad is to reduce the variance of the

(sub)gradient vectors by summing up the outer-products of

the history of the (sub)gradient vectors to build a metric.

This metric emphasizes infrequently occurring input vectors

(or features if we borrow the terminology from the original

paper [47]). AdaGrad is thus useful when such infrequently

occurring input vectors are highly informative and discrimina-

tive. As such, although AdaGrad and PDA share the common

principle of changing the geometry of the learning space to

improve the convergence behaviours, those methods target

different situations from each other and one cannot tell which

performs better in general. In the experiments presented in

the following section, PDA outperforms AdaGrad-RDA and

AdaGrad-FOBOS consistently. The AdaGrad method has been

applied to the RDA and COMID algorithms [50, 65] with

the ordinary loss functions unlike PDA. The relations are

summarized in Table III. See Section III-C for the differences

between RDA and PDA.

IV. Simulation Results

We show the efficacy of the proposed PDA method in

applications to classification and regression. We first show

that the proposed method is insensitive to the choice of the

regularization parameter (Experiment A); see Section III-C.

We then consider two datasets for classification: MNIST

hand written digit dataset [66] (Experiment B-1) and RCV

text dataset [67] (Experiment B-2). We finally consider three

regression problems: sparse system identification (Experiment

C-1), acoustic echo cancellation (Experiment C-2), and non-

linear model estimation with multikernel adaptive filtering

[68] (Experiment C-3). Whenever numerical instability may

happen due to devision-by-zero, regularization is considered

with parameter (such as ǫ, δ) 1.0 × 10−5 for all methods

throughout the simulations. In each simulation, the parameters

for PDA and the other methods compared are chosen, so that

the speeds of initial convergence are comparable, within the

following ranges: λ ∈ [1.0 × 10−8, 10], η ∈ [1.0 × 10−6, 10],

α ∈ [0, 1], γ ∈ [1, 2] (for Experiments A, C-1, and C-

2), and λ ∈ [1.0 × 10−8, 1.0 × 106]. Although an efficient

implementation of the hyperparameter optimization scheme

such as mixture-of-experts type approaches [69] could be

employed, this experimental section aims to present pure

comparisons among the stochastic optimization schemes, and

thus an employment of such an elaborate scheme is beyond

the scope of the present study.

All the results presented in this section are averages over

300 independent trials. Here, the randomness is with respect

to the sparse system, input, and noise for system identification

(Experiments A, C-1, and C-3), with respect only to noise for

echo cancellation (Experiment C-2), and with respect to the

validation sub-dataset for classification (Experiments B-1 and

B-2).

A. Experiment A: Sensitivity Analysis

To show that the use of constant step-size and

regularization-parameter makes the algorithm insensitive to the

choice of λ, we consider the following algorithm:

wt := arg min
w∈Rn

(〈
η

tb
st,w

〉

+ h(w) + ηtaψ(w)

)

, (27)

where a ∈ R and b ∈ R are constants. Letting a = 1−b in (27)

reproduces RDA (26) with βt := tb/η. In particular, the case

of a = b = 0.5 corresponds to βt :=
√

t/η (the diminishing

step-size case), and the case of a = 1, b = 0 corresponds to

βt := 1/η (the constant step-size). Meanwhile, letting a = b =

0 in (27) reproduces PDA for α = 1 (the case of the ordinary

Euclidean metric) which uses the step-size and regularization

parameters both constant.

We compare the performances of the above three cases in

the online-regression task of identifying a randomly-generated

sparse system w∗ ∈ R1000 with sparsity level (proportion

of zero components) 80% (see Section II-C for definition

of w∗). Here, the positions of zero components are chosen

randomly with equal probability, and the nonzero components

are randomly generated from the i.i.d. uniform distribution

U[−4, 4]. The input vector xt ∈ R1000 is randomly drawn from

the i.i.d. uniform distribution U[−2, 2], and the noise νt from

the zero-mean i.i.d. normal distribution N(0, 0.01).

To show the pure effects of using constant step-size and

regularization-parameter simultaneously, we employ the or-

dinary least-square loss function (rather than the squared-

distance function), and let h(w) := ||w||2 /2 for all cases.

Parameters are summarized in Table IV. Figure 5 plots the

learning curves for (a) system mismatch ||w∗ − wt ||2/||w∗||2 and

(b) the sparsity. It is seen that RDA with diminishing step size



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

TABLE IV: Parameters for Experiment A.

Algorithms λ η α

a = b = 0.5 (RDA) 0.2 0.008 -
a = 1, b = 0 (RDA w/ const. step size) 1 0.001 -
a = b = 0 (PDA w/ least-square loss) 8000 0.0004 1

0 20000 40000
Iteration number

10
−6

10
−4

10
−2

10
0

S
y
st

em
 m

is
m

at
ch

RDA

RDA 
(const.)

PDA

(a)

0 20000 40000
Iteration number

0

20

40

60

80

100
S

p
ar

si
ty

 (
%

)

RDA

RDA 
(const.)

PDA

(b)

Fig. 5: Learning curves for best λ in Experiment A. (The

sparsity of “RDA” is 0%.)

TABLE V: Parameters for Experiment B-1.

Algorithms λ η α

AdaDelta - - -

AdaGrad-FOBOS 5 × 10−3 0.1 -

AdaGrad-RDA 10−4 3.4 -

Adam - 5 × 10−5 -

RDA 5 × 10−4 1.5 -

PDA 10−4 0.15 1

performs poor in this simulation setting. We therefore show in

Figure 6 the sensitivity curves of PDA and RDA with constant

step size to the choice of λ.

B. Applications to Classification Tasks

The proposed method is compared to RDA [3], AdaGrad-

RDA [47], AdaGrad-FOBOS [47], Adam [49], and AdeDelta

[35]. PDA employs the halfspace Ct given in (23). All the

other algorithms employ the logistic loss

ϕt(w) = yt log
(

1 + e−ŷt

)

+ (1 − yt) log

(

1 + e−ŷt

e−ŷt

)

, (28)

where ŷt := xT

t w. For all algorithms, ψt(w) := λ ||w||1 is used;

i.e., α = 1 (Qt = I) for PDA. The dataset is split into a

validation sub-dataset (30%) and a training sub-dataset (70%).

The error rate, the misclassification ratio for the validation

dataset, is adopted as a performance measure. In each trial, the

training dataset is shuffled randomly. The one-vs-all method

is employed to train the multi-class classifier. Parameters

are summarized in Tables V and VI for handwritten digit

classification and text classification, respectively.

1) Experiment B-1: Handwritten Digit Classification:

MNIST [66] is a handwritten digit dataset. Each datum con-

sists of 28 × 28 pixels with gray-scale values normalized in
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Fig. 6: Sensitivity of RDA and PDA to the choice of λ.
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Fig. 7: Results for Experiment B-1.

the interval [0, 1], and it is labeled by a digit from 0 to 9.

The objective is to learn a linear classifier that discriminates

the handwritten images. Figure 7 shows the learning curves of
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Fig. 9: Results for Experiment B-2. (The bottom overlap-

ping curves in (b) are “AdaGrad-FOBOS”, “AdaDelta”, and

“Adam”.)

TABLE VI: Parameters for Experiment B-2.

Algorithms λ η α

AdaDelta 0.1 10−5 -

AdaGrad-FOBOS 4 × 10−6 0.1 -

AdaGrad-RDA 10−7 0.1 -
Adam 0.1 0.1 -

RDA 10−8 1.4 -
PDA 0.05 0.3 1

(a) the error rate and (b) the sparsity level for each algorithm.

Figure 8 depicts the normalized magnitudes of the components

of wt generated by PDA and Adam, visualizing which parts

of the images the classifiers look at to tell whether each given

image is a specified number or not. Referring to the two

images of number 8 in the figure, for instance, one can see

that the classifier obtained by PDA looks at the relevant parts

more clearly than the one obtained by Adam.
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Fig. 10: Results for Experiment C-1.

TABLE VII: Parameters for Experiment C-1.

Algorithms λ η α r

PAPA - 0.5 0.8 1

APFBS 10−5 0.5 0.8 1
RDA 0.2 0.008 - -

RDA (constant) 2 0.0004 - -

AdaGrad-RDA 10−3 1 - -
PDA 4 0.5 0.8 1

2) Experiment B-2: Text Classification: RCV is a news text

dataset [67]. Each datum is based on bag-of-words represen-

tations (where the feature vectors contain the frequencies of

occurrence of each word) and is associated with some of four

labels (Economics, Industrial, Social, and Markets); multiple

labels are allowed. The objective is to learn a linear classifier

to tell whether a given news-text belongs to a prespecified

category. The bag-of-words representations are typically sparse

since the number of coefficients is the number of vocabularies

that appear in the text data, and each text datum only contains

a small fraction of those vocabularies. Figure 9 shows the

results.

C. Applications to Regression Tasks

For the linear regression tasks (Experiments C-1 and C-2),

the proposed method is compared to PAPA [14, 62], APFBS

[52, 53], RDA [3], and AdaGrad-RDA [47]. For RDA and

AdaGrad-RDA, ϕLS
t (w) in (10) and ψt(w) := λ ||w||1 are used.

For the other algorithms, ϕt(w) in (7) is used with the metric in

(14) for fairness. Also for fairness, the quadratically-weighted

ℓ1 norm in (17) is used for both PDA and APFBS. For the non-

linear regression task (Experiment C-3), the proposed method

(the nonlinear version of the PDA method) is compared to

the existing multikernel adaptive filtering algorithm based on

APFBS [70]. The system mismatch is used as a performance

measure for sparse system identification and echo cancellation,

and MSE is used for nonlinear model estimation. Parameters

are summarized in Tables VII and VIII for sparse system

identification and echo cancellation, respectively.

1) Experiment C-1: Sparse System Identification: The

sparse system considered here is the same as used in Section

IV-A. Figure 10 depicts the results. For the RDA algorithm,
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Fig. 11: Results for Experiment C-2.

we test both diminishing and constant step-size sequences;

“const.” in the figure indicates constant step-size. Note that

PAPA, APFBS, and RDA (with diminishing step-size) generate

the coefficient vectors with sparsity level 0% in this case.

(PAPA uses no sparsity-promoting regularizer, and hence it

always gives sparsity level 0% in principle.)

2) Experiment C-2: Acoustic Echo Cancellation: Acoustic

echo paths tend to decay in time and thus are often assumed

weakly sparse [12, 13, 15, 63]; i.e., many of the coefficients

are (not exactly but) nearly zero. Figures 11a, 11b depicts the

speech signal and the echo path used in the simulation. The

sampling frequency of speech signal and echo path is 8.0 kHz.

The learning is stopped whenever the amplitude of input signal

is below the threshold 1.0×10−4 for avoiding divergence. The

noise is zero-mean i.i.d. Gaussian with the signal to noise ratio

(SNR) 20 dB. Figures 11c and 11d show the results. For the

RDA algorithm, the results for the diminishing step size are

poor (as in the case of Experiment C-1) and are hence omitted.

3) Experiment C-3: Nonlinear model estimation: A non-

linear extension of PDA is possible based on the multikernel

adaptive filtering framework [68, 71, 72], as elaborated in Ap-

pendix A. The extended PDA is finally applied to the problem

of estimating the following nonlinear system [70] (see Figure

12a):

yt := exp
(

−20(xt − 0.1)2
)

− 2 exp
(

−20(xt − 0.8)2
)

+ ut, (29)

where xt ∼ U[0, 1] and ut ∼ N(0, 0.01). Parameter settings are

given in Appendix A. Figure 12 plots (a) the MSE learning

curves and (b) the evolutions of dictionary size. Here, a small

dictionary size implies that the estimated model is sparse.

TABLE VIII: Parameters for Experiment C-2.

Algorithms λ η α r

PAPA - 0.1 0.2 2

APFBS 10−5 0.2 0.01 2

RDA (constant) 10−2 0.02 - -

AdaGrad-RDA 10−5 0.02 - -
PDA 0.05 0.2 0.2 2
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Fig. 12: Results for Experiment C-3.

D. Discussions

Through the whole simulations, PDA achieves the sparsest

solutions among all the methods, and this leads to the best

classification/estimation accuracy as well as the efficiency in

terms of the validation-data classification/regression costs. Let

us present some remarks on each simulation.

• Experiment A (sensitivity analysis): First, PDA is insen-

sitive to the choice of λ in contrast to the high sensitivity

of RDA (with constant step size). Indeed, the system

mismatch of PDA stays constant with the correct sparsity

level 80% for a wide range of λ, while the system

mismatch of RDA starts increasing as soon as the sparsity

level reaches the correct one. This notable stability is

an important advantage of the proposed method. Sec-

ond, the constant step-size case (a = 1, b = 0) gives

much higher accuracy than the diminishing step-size case

(a = 0.5, b = 0.5) in the RDA framework. This is due to

the smoothness of the loss function.

• Experiment B-1 (MNIST hand-written-digit classifica-

tion): Although Adam achieves low error rates compa-

rable to PDA, its sparsity 9.2% is the lowest among all

the methods (i.e., it yields the densest wt).

• Experiment B-2 (RCV news-text classification): PDA suc-

cessfully extracts the sparse structure of the text dataset,
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thereby gaining the high classification-accuracy.

• Experiment C-1 (sparse system identification): It achieves

a sparsity level close to the true level 80% approximately

in 5,000 iterations, whereas PAPA, APFBS, and RDA

generate dense coefficient vectors of sparsity level nearly

0% and AdaGrad-RDA takes about 40,000 iterations to

achieve sparsity level 40% (which is a half of the true

one). (Recall here the difference between APFBS and

RDA discussed in Section III-D.)

• Experiment C-2 (echo cancellation): Although the echo

path is sparse only in the weak sense, PDA still achieves

a sparser solution and attains better performances than

the other methods. The improvements come from the

better bias-variance tradeoff; i.e., the proximal (shrinkage)

step vanishes the nearly-zero coefficients, and this often

leads to significant reduction of estimation variance at the

price of a slight increase of bias. (The same applies to

Experiment B-1.)

• Experiment C-3 (nonlinear model estimation): PDA

achieves lower MSEs and a smaller dictionary-size (the

number of basis functions used for estimation) than

APFBS.

In summary, all the results support the clear benefits from

using the squared-distance loss (the projection), rather than

the ordinary losses. In particular, in the applications to classi-

fication, the standard Euclidean metric was employed because

the use of the sparsity-promoting metric yielded no significant

gains in this specific application. The reason would be because

faster convergence to an optimal solution does not directly

affect the performance measure (i.e., misclassification ratio)

of classification.5 The gains of PDA in the classification

applications come solely from the use of projection as well

as the fixed step-size and regularization parameters. The gains

from the sparsity-promoting metric and the quadratically-

weighted ℓ1 regularizer are significant in the linear-regression

applications. Through the experiments, PDA turns out to enjoy

1) the considerable insensitivity to the choice of the regu-

larization parameter λ, and

2) the remarkable sparsity-seeking property which has a

striking difference from those of the existing methods

(including RDA and APFBS/FOBOS).

We finally mention that, if other prior knowledge than

sparseness is available, one may accommodate such prior

knowledge as convex constraints/penalties based on convex

analysis [73, 74] and may consider to use it within the PDA

framework. One may also accommodate it in the prior dis-

tribution of observed data based on the statistical Bayesian

framework (cf., e.g., [75, 76]). Further discussions in this

direction are out of the scope of this paper.

V. Conclusion

We proposed the efficient regularized stochastic optimiza-

tion framework named PDA which enjoys high estimation-

accuracy and excellent sparsity-promoting capability (and

hence enjoys low computational costs for validation-data

5The intersection of the halfspaces Ct given in (23) is unbounded (if exists),
because w ∈ Ct implies αw ∈ Ct for any α ≥ 1, as well as convex.

evaluations as well). In the PDA framework, classifica-

tion/regression tasks involving sparsity are cast as the stochas-

tic minimization problem of the smooth loss function (i.e.,

the squared-distance function) penalized by the sparsity-

promoting regularizer. The proposed method was derived

based on RDA with the following three ideas: (i) the use of

projection (a direct consequence of the use of the squared-

distance loss), (ii) the simultaneous use of the sparsity-

promoting metric and the quadratically-weighted ℓ1 regular-

izer, and (iii) the use of step-size and regularization param-

eter both constant. The use of the quadratically-weighted ℓ1

regularizer successfully reduces the estimation variance while

alleviating those possible large biases caused by the use of

the sparsity-promoting metric. To the best of authors’ knowl-

edge, the squared-distance function and the sparsity-promoting

metric have not yet been studied under the dual averaging

framework. The proposed method is insensitive to the choice

of the regularization parameter. Numerical examples showed

the advantages of the proposed method over the existing

methods including AdaGrad and APFBS in its applications to

regression and classification with real data (as well as some

synthetic data).

Appendix A

A Nonlinear Extension Based onMultikernel Adaptive

Filter

We consider the following nonlinear system model:

yt = f (xt) + νt, xt ∈ Rn, νt ∈ R, (30)

where the function f : Rn → R is usually assumed smooth.

Multikernel adaptive filtering [68, 71] is based on the following

model:

ft(x) :=
∑

m∈M

∑

j∈Jt

h
(m)

j,t
km(x, x j)

︸               ︷︷               ︸

mth model

, h
(m)

j,t
∈ R, (31)

where km : Rn × Rn → R, m ∈ M := {1, 2, · · · , M}, are the

positive definite kernels to be used, and {km(·, x j)}m∈M, j∈Jt

is the dictionary of size rt with the index set Jt :=

{ j(t)
1
, j

(t)

2
, · · · , j

(t)
rt
} ⊂ {1, 2, · · · , t}. The model in (31) can be

rewritten as

ft(xt) = 〈Ht, Kt〉F := trace(HT

t Kt), (32)

where

Ht : =

[

h
j
(t)

1
,t

h
j
(t)

2
,t
· · · h

j
(t)
rt
,t

]

∈ RM×rt ,

h j,t : =
[

h
(1)

j,t
, h

(2)

j,t
, · · · , h(M)

j,t

]T

∈ RM ,

Kt : =

[

k
j
(t)

1
,t

k
j
(t)

2
,t
· · · k

j
(t)
rt
,t

]

∈ RM×rt ,

k j,t :=
[

k1(xt, x j), k2(xt, x j), · · · , kM(xt, x j)
]T ∈ RM .

Define the loss function lt(H) := ϕt(H) + ψt(H), H ∈ RM×rt ,

with

ϕt(H) : =
1

2
d2(H,Ct), ψt(H) = λ

∑

j∈Jt

∣
∣
∣

∣
∣
∣h j

∣
∣
∣

∣
∣
∣ , (33)
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TABLE IX: Parameters for Experiment C-3.

Algorithms η λ ǫJ rmax

APFBS 0.3 10−8 10−12 20

PDA 0.3 10−6 10−12 20

where d(H,Ct) := min
Y∈Ct

||H − Y||F :=
√

〈H − Y, H − Y〉F with

Ct := {H ∈ RM×rt | 〈H, Kt〉F = yt}. The (ordinary) gradient of

ϕt(H) is given by ∇ϕt(H) = H − PCt
(H) with

PCt
(H) : = arg min

Y∈Ct

||H − Y||2F = H − 〈H, Kt〉F − yt

||Kt ||2F
Kt. (34)

The PDA update for multikernel adaptive filtering is given as

Ĥt := − η
t∑

τ=1

∇ϕτ(Hτ−1), (35)

Ht := proxψt

(

Ĥt

)

=
∑

j∈Jt

max





1 − λ

∣
∣
∣

∣
∣
∣ĥ j,t

∣
∣
∣

∣
∣
∣

, 0





ĥ j,te

T

j,rn
, (36)

where ĥ
j
(t)
i
,t

is the ith column of Ĥt, and e j,rn
is the length-rn

unit vector that has one at the jth entry and zeros elsewhere.

The dictionary is constructed in an online fashion as follows

[70]:

Dictionary update

Iteration : For t = 1, 2, 3, · · ·
1. Grow the dictionary as J+

t−1
:= Jt−1 ∪ {t}

2. Update the coefficients by (35) and (36)

3. If rt ≥ rmax, refine the dictionary as

Jt := { j ∈ J+
t−1
|
∣
∣
∣

∣
∣
∣h j,t

∣
∣
∣

∣
∣
∣ ≥ ǫJ } for some small ǫJ > 0

In the simulation presented in Section IV-C3, we adopt the

normalized Gaussian kernel [77]

km(x, z) :=
1

√
2πσm

exp

(

−||x − z||2
2σ2

m

)

, x, z ∈ Rn, (37)

where σ2
m := a × 10b is the kernel parameter, where a ∈

{1, 2, · · · , 9} and b ∈ {−4,−3, · · · , 1} (M = 54). The other

parameters are summarized in Table IX.
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