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Preliminaries

Outline

Explanation of stochastic optimizers in machine learning,
especially, from the perspective of each metric.

m Mostly, stochastic optimizers can be divided into three types of metric.
Quasi-Newton Method Type
Finite Difference Method (FDM): SGD-QN [1], AdaDelta [2], VSGD |3, 4]
Extended Gauss-Newton: KSD [5] , SMD [6], HF [7]
LBFGS: stochastic LBFGS [8, 9], RES [10],
Natural Gradient Type: Natural Gradient [11], TONGA [12, 13]
Root Mean Square (RMS) Type: AdaGrad [14], RMSprop [15], Adam [16]

Asahi Ushio Metric Perspective of Stochastic Optimizers

3/



Preliminaries

Overview of Stochastic Algorithm

Quasi-Newton (Hessian) Approximation

FDM-based

- SGD-QN
- VvSGD
- AdaDelta

Extended
Gauss-Newton
- Hessian-Free
- KSD (Kryrov Subspace
Descent)
- SMD (Stochastic Meta
Descent)

BFGS-based

- Online LBFGS
- RES
Stochastic LBFGS

Natural Gradient (Fisher
Information Matrix)
Approximation

AdaGrad

- TONGA
- FastNatural Gradient

RMSProp
Adam
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Preliminaries

Problem Setting

m Model: For an input ; € R™, the output ¢; € R is derived by

Activation : gy = M(z;) (1)
Output : z: = Ny (1) € R. (2)

m Loss: With instantaneous loss function I;(w) of parameter w,

L(w) = E[li(w)], . 3)
Problem Setting M(z) Ny, () 1e (G¢) Yt
. 2
Regression z w'x M yr € R
1
Classification Tre—r w'a — [ye log(9¢) + (1 — ye) log(1 — §¢)] ye € {0,1}
p
e
Multi-Classification 21‘72 wiTa: - Zi’c=1 Ye,i log(J:) ye,i € {0,1}
i=1€7"
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Preliminaries

Brief lllustration of Model

Output Activation

Hidden Layer

Figure: Neural Network Figure: Linear Model
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Preliminaries

Stochastic Optimization

m Purpose: Find @ = arg min L(w) by stochastic approximation.
w

SGD (Stochastic Gradient Descent) and Varinats

t
wy = w1 — g, N € Rst. lim 7 = 0and tliggoz;m =oco (4)
1=

d
Vanilla SGD: g, = — 1, (w¢—1)
dw
d
Momentum : g; = vg¢—1 + (1 — ’y)%lt(wt,l), vyeR
d
NAG: gi=7vg1-1+ (1 —7)5-l(wi—1 —vgi—1)

dw
1 d
Minibatch : g, = 7 ; —elii(wi), TER

m Suppose [;(w) is differentiable.
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Hessian Approximation

Quasi-Newton Method

m Newton Method employs Hessian matrix:

w; = wi—1 — Bigy (5)
d2L(wt_1)

B;=H;', H; = 3

» Quasi-Newton employs Hessian approximation H; instead of H;.

FDM (Finite Difference Method): SGD-QN [1], AdaDelta [2], VSGD |3, 4]
Extended Gauss-Newton Approximation
LBFGS

m Diagonal approximation is often used in stochastic optimization:

H, = diag (h1t ... hny) (6)
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Hessian Approximation  Finite Difference Method

m SGD-QN [1] employs instantaneous estimator of Hessian:

t
1 n 1
S ol
i 4]
1 ' 1 1 1
E R = o +(1—-a)=
hng] =1 hi7t hft[)M hz,t—l
pEPM . Yit = Gitm1

Wi t—1 — Wi t—2

m The FDM approximation (9) is called secant condition in quasi-newton

method context.
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Hessian Approximation  Finite Difference Method

AdaDelta

m SGD updates (5) can be reformulated
Bt = —(wt — wt,l)g;T. (10)

m AdaDelta [2] approximates Hessian by (10) :

t
Gist RMS [g;,]
hijy =E|———"—— ~ ’ . 11
! [ Wi — wi,t—1:|,r_1 RMS [w;s—1 — wj ¢—2] (11)

Here w; + — w; +—1 is not known at ¢, so approximated by w; ;—1 — w; 1—2.

m With numerical stability parameter e: (sensitive parameter in practice)

RMS|g:| : =/E [93]3:1 te (12)

t — _
Elg2] _ ~ g = ag; +(1—a)gi1 (13)
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Hessian Approximation  Finite Difference Method

VSGD: Quadratic Loss

Quadratic Approximation of Loss

m Taylor expansion gives

diy(a)”
dw

li(w) = ly(a) +

m For w; = arg minl;(w),
weR™

Then I;(w) can be locally approximated by the quadratic function

(14)

1 1 APl () .
li(w) ~ i(w—wt) W(w—wt). (15)
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Hessian Approximation  Finite Difference Method

VSGD: Noisy Quadratic Loss

Noisy Quadratic Approximation of Loss with Diagonal Hessian Approximation

1f(w) :

Il
o1
g
|
&
=
B
|
&

m SGD for I with element-wise learning rate 7; ;:

q

_ dli (wi—1)

Wit = Wit—1 — ni,tidw'
1

= Wi p—1 — Ni,thi e (Wi p—1 — Wit)

=W t—1 — Ui,thi,t(wi,t—l —W; + uz‘), Uq,t ™~ N(O, U?)- (17)
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Hessian Approximation  Finite Difference Method

VSGD: Adaptive Learning Rate

Greedy Optimal Learning Rate

m VSGD (variance SGD) [3, 4] choose the learning rate, which minimize
the conditional expectation of loss function:

i+ = arg min {E [If (w; )|wi 1], }
n

2
1 . .
(wi,tl — —hi(Wip—1 — W +uy) — wi,t)
77 t

ol (i —y)? (18)
" hig (wig—1 — ;)% + 02

=arg min | E
n
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Hessian Approximation  Finite Difference Method

VSGD: Variance Approximation

m In practice, w is unknown so approximated by

2
(w1 — ;) = (E [wi,r — U%‘,r]t;ll)
(Wi 41 —0;)* +0f =
where

E [gi,‘l'}:zl R it = GeGie + (1 — it)Gie—1

t _ _
E [giT]Tzl ~ Vi = Oéi,tgf,t + (1= i)vie—1.

(21)
(22)
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Hessian Approximation  Finite Difference Method

VSGD: Hessian Approximation

t
T=1"

m Hessian is approximated by h; ; := E [h; ;]
m Two approximation of E [hiﬂ']f—zl based on FDM:

(Scheme 1) }_li)t = Oéi,tili,t +(1- aivt)i_zm (23)
N2
. E [(ht) ]
(Scheme 2) h; 4 1= ——— (24)
E {hi,t}

~ 2 N 2
E [(hi,t) ] RVt = Qg (hi,t) + (1 — a)vig
E |:}Alzt:| My = Oéi,tili,t + (1 —ay)miy

where

P Git— dly(wi s + Giyt)/dw

hi : 25
! Jit (25)

)
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Hessian Approximation  Finite Difference Method

VSGD: Weight Decay

Weight Sequence: Weight is update by following heuristic rule

QG ¢ = 1-— . QG t—1 + 1. (26)
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Hessian Approximation Root Mean Square

RMS: AdaGrad, RMSprop, Adam

m AdaGrad [14], Adam [16], RMSProp [15] can be summarized as
By = e Ry (27)
Ry :=diag(1/r14...1/rn ) (28)
rit : = RMS [9i¢] = \/E [gzt] (29)

m Approximation of expectation and learning rate is different:
(AdaGrad) E [g7,] ~ Zgz s om=n/VE (30)
(RMSProp) E [gi’t] R Ui, Me=T1 (31)
(Adam) B[] ~ o0 = 1200 m=nim (32
where 7; 4 1= 0‘92‘2,7: +(1— )T 1.
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Hessian Approximation Root Mean Square

Adam

m For the momentum sequence:

t

=1

the expectation of g, includes moment bias (1 — ~+*) such as

d . d
ge =7ge-1+ (1 =)o l(we-1) = (1-7) > 2V (Wi-1);

t
. d
Elg:, =E [(1-7) Z ' dli(’wil)‘|
i=1 w t
d : d
=E|—I _ 1- e _ 1—~Y.
)] (=03 = )] (-
m Adam'’s learning rate is aimed to reduce the moment bias.
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Hessian Approximation Extended Gauss-Newton: Preliminaries

Extended Gauss-Newton

Relation to the Gauss-Newton

m Gauss-Newton is an approximation of Hessian, which is limited to the
squared loss function.

m Extended Gauss-Newton is an extension of Gauss-Newton by [6].
Applicable to any loss function.

Multilayer Perceptron Model

m The loss function (3) can be seen as

L(g) = E[l:(9:)], (33)

where
Activation : g = M(z) (1)
Output : 2y = Ny (x4). (2)
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Hessian Approximation Extended Gauss-Newton: Preliminaries

Extended Gauss-Newton: Hessian Derivation

m Hessian of (33) is

dw?
_d [dz (djdL(y)
T dw | dw \dz dy
dz d (dydLH)\" | d®z (djdL(j)
dwdw \dz dg dw? \dz dj

LT (L)Y | (ddL)
dwdw dz \dz dj dw?

+
dgdL(G)\ = (djdL(j)
= InIN g (dz 4 ) T aw? \dz " dp (34)

where Jy = jj’ is Jacobian.

+
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Hessian Approximation Extended Gauss-Newton: Preliminaries

Extended Gauss-Newton: General Case and Regression

Extended Gauss-Newton

m Ignore the 2nd order derivation in (34),

Hox = In T o (dﬁdL(}?)) (35)

dz dy

m Regression: Since jy =1,

£ (20 £ 400w [f-] o oo

m Extended Gauss-Newton approximation is

Hen = INJY (37)
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Hessian Approximation Extended Gauss-Newton: Preliminaries

Extended Gauss-Newton: Classification

£ () -2 ()] - [
Y

(-2

d
=FE; |— (9 — =g — 4> 38
t[dz(y yt)} g—19 (38)
where
dj et 11
dz (te=)? 1+e=z (Aresp 7Y
d, ye  l—uy
2 — (2t _
== (5-5)
m Extended Gauss-Newton approximation is
Heon = (5 — i°)InJy (39)
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Hessian Approximation Extended Gauss-Newton: Preliminaries

Extended Gauss-Newton: Multi-class Classification

2
d (dy; d . d e e Sk e
o \dmap ) =4 el T
dz; \ dz; dy; dz; S e S e ez

2
e*i e* . .9
Tk L \=k | TV (40)
Dic1 €7 (Zzl exi )
m Extended Gauss-Newton approximation is

Hang = (i — 97)Ini TN (41)
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Natural Gradient

Natural Gradient

Fisher Information Matrix

m Suppose the observation y is sampled via

y ~ p(9). (42)

m Then fisher information matrix becomes

dlogp(yli) dlogp(yli) ©
F— 43
dw dw 43)
Natural Gradient
wy = wy—1 — Bigy (44)
B, =F!
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Natural Gradient

Natural Gradient: Regression

m Regression: Suppose gaussian distribution,
1 @-v)?
y,0) = e 202 45
p(yl9,0) Jonot (45)
m Fisher information matrix:
pol 4y) InJT (46)
where
dlogp(ylg,o) _ d | (§—y)*
dw dw 202
_y-ydg
0?2 dw
y—ydzdy y—y
— 2 J 47
0?2 dwdz o2 N (47)
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Natural Gradient

Natural Gradient: Classification

m Classification: Suppose binomial distribution,

p(ylg) = "1 - 9" (48)
m Fisher information matrix:
F=(y—9)*InJy (49)
where

dlog p(ylg, o) dz dy d R .
08Py, 0) _ 92 Y @ () 1—y)log (1 —
T dw 4z 47 {ylogy + (1 —y)log (1 — )}

_ g3y 1oy
Ndz g 1l—g
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Natural Gradient

Natural Gradient: Multi-class Classification

m Multi-class Classification: Suppose multinomial distribution

k
Pyl i) = [ [ 97 (51)
=1

m Fisher information matrix:
Fyr={(1 =9y} IniI N (52)
where

dlog {p(ys, .-, ywlgn, - 9x)} _ dzi dj d 30, yilog(§:)

=Jn, {(@z - 3712)?} =JIni(1 = 0:)yi
(54)
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Experiment

Experiment: Settings

m Regression: Synthetic data, 1000 features.
m Classification: MNIST (hand written digits), 764 features, 1 ~ 9 labels.

.
Hyperparameters

m Grid Search: Employ the best performed hyperparameters.

Learning rate.
Weight of RMS.

Evaluation

m Regression: Mean square error.

m Classification: Misclassification rate.
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Experiment

Experiment: Regression

60000

40000 1

Error Rate

20000 1

—e— SGD
—e— AdaGrad
—e— RMSprop
—e— Adam
—e— AdaDelta
—e— VSGD

0 5000 10000 15000 20000 25000

Iteration

m VSGD is the best even though tuning free.
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Experiment

Experiment: Classification

—e— SGD
—eo— VSGD
—e— AdaGrad
—e— RMSprop
—e— Adam
—e— AdaDelta

Error Rate

0 10000 20000 30000 40000 50000 60000
Iteration

m AdaDelta is the best even though tuning free.
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Conclusion

Conclusion & Future Work

m Summarize stochastic optimizers from the view of its metric.
m Quasi-Newton type, RMS type and Natural Gradient type.

m Conduct brief experiments (classification and regression).
m See the efficacies of tuning free algorithm.
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