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Introduction

Introduction

Background Now, we have many kinds of data (SNS, IoT, Digital News) [1].

→ Machine learning and signal processing become more important !

Challenges (demands for algorithms)

Process real-time streaming data.

Achieve low complexity.

Deal with high-dimensionality and sparsity of data.

[1] McKinsey, ”Big Data: The next frontier for innovation, competition, and productivity,” 2011.

In Signal Processing ...
Squared distance cost:
Projection-based method
ex) NLMS, APA, APFBS [2]

Change Geometry:
PAPA, Variable Metric [3]

In Machine Learning ...
Regularized Dual Averaging
(RDA) type: RDA [4]

Forward Backward Splitting
(FBS) type: FOBOS [5]

Change Geometry:AdaGrad [6]

[2] Murakami et al., 2010, [3] Yukawa et al., 2009, [4] Xiao, 2009, [5] Singer et al., 2009, [6] Duchi et al., 2011
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Introduction

An Illustration of Projection-based Method
in case of online regression
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xt ∈ R
n : the input vector

yt ∈ R : the output
w∗ ∈ R

n : the unknown vector

Qt ∈ R
n×n : a positive definite matrix

Qt-norm : ||w||Qt
:=

√

⟨w,w⟩Qt
,

⟨w,z⟩Qt
:=

√

wTQtz for w, z ∈ R
n
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Introduction

FBS type versus RDA type

grad

grad

FBS

RDA
gradient

gradient

prox (regularizer)

prox (regularizer)

w∗

w∗

w1

w1 w2

w2

w3
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FBS: The effects of the proximity
operator accumulate over the
iterations.
✎

✍

☞

✌
Tradeoff between the sparsity

level and the estimation accuracy.

RDA: FREE from the accumulation.
✎

✍

☞

✌
A high level of sparsity comes
with high estimation accuracy !
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Introduction

Abstract of This Work

Motivation

1 RDA: Sparse solution.

2 Squared distance cost: Stable adaptation.

3 Variable metric: Promoting sparsity to improve the performance.

Combination of 3 properties.

Sparsity-promoting and stable learning !

Proposed Algorithm
✞

✝

☎

✆
Projection-based Dual Averaging (PDA)

Features: RDA with Squared distance cost, employing variable metric.

Show efficacy by numerical examples (simulated data, real data).
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Preliminaries

Preliminaries

Problem Setting : an online regularized optimization

min
w∈Rn

E [ϕt(w)] + ψt(w), t ∈ N (1)

ψt,ϕt : a possibly nonsmooth function
w : supposed to be sparse or compressible

Basic Stochastic Optimization Methods

SGD
wt := wt−1 − η∇ϕt(wt−1), η > 0 (2)

Dual Averaging [1]

wt := arg min
w∈Rn

(〈

∑t
i=1 ∇ϕi−1(wi−1)

t
,w

〉

+ µth(w)

)

, µt = O
(

1√
t

)

(3)

h(w) : the prox-function

[1] Y. Nesterov, ”Primal-dual subgradient methods for convex problems”, Mathematical Programming, 2009.
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Preliminaries

Projection-based Methods

Cost Function of Projection-based Methods

The Qt-metric distance cost (normalized MSE in regression case).

ϕt(w) : =
1

2
d2Qt

(w, Ct) (4)

dQt
(w, Ct) : = min

z∈Ct

||w − z||Qt
(5)

Qt ∈ Rn×n : a positive definite matrix
Ct ⊂ Rn : a closed convex set

Qt-norm for w, z ∈ Rn : ||w||Qt
:=
√

⟨w,w⟩Qt
, ⟨w, z⟩Qt

:=
√

wTQtz

Gradient Calculation

The Qt-gradient of ϕt

gt := ∇Qt
ϕt(wt−1) = wt−1 − PQt

Ct
(wt−1), wt−1 ∈ R

n. (6)

The Qt-projection onto Ct

PQt

Ct
(w) := arg min

z∈Ct

||w − z||Qt
. (7)
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Proposed Algorithm Projection-based Dual Averaging (PDA)

Proposed Algorithm

Projection-based Dual Averaging (PDA)

wt : = arg min
w∈Rn

(

⟨st,w⟩Qt
+

||w||2Qt

2η
+ ψt(w)

)

= arg min
w∈Rn

(

ηψt(w) +
1

2
||w + ηst||2Qt

)

= proxQt

ηψt
(−ηst), st =

t
∑

i=1

∇Qt
ϕi−1(wi−1), η ∈ [0, 2] (8)

The proximity operator

proxQt

ηψt
(w) := arg min

z∈Rn

(

ηψt(w) +
1

2
||w − z||2Qt

)

, ∀w ∈ R
n. (9)
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Proposed Algorithm Projection-based Dual Averaging (PDA)

Application to Online Regression

Problem Setting : Online Regression

yt := wT
∗xt + νt ∈ R

xt ∈ R
n : the input vector

yt ∈ R : the output
w∗ ∈ R

n : the unknown vector
νt ∈ R : the additive white noise

Definition of the Projection

The linear variety

Ct := arg min
w∈Rn

∣

∣

∣

∣XTw − yt

∣

∣

∣

∣

In
. (10)

Xt := [xt · · ·xt−r+1] ∈ R
n×r

yt := [yt, . . . , yt−r+1]
T ∈ R

r

The projection onto Ct

PQt

Ct
(wt−1) := wt−1 −Q−1

t X†
t (X

T
t wt−1 − yt). (11)

The Moore-Penrose pseudo-inverse X†
t

Xt(X
T
t Q

−1
t Xt + δIn)

−1, δ > 0.
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Proposed Algorithm Projection-based Dual Averaging (PDA)

Design of Metric Qt & Regularizer ψt

Design of metric Qt (following [Yukawa et al. 2010])

Qt :=
α

n
In +

1− α

St
Q̃−1

t , α ∈ [0, 1]. (12)

Q̃t := diag(|wt−1,1|, . . . , |wt−1,n|) + ϵIn for some ϵ > 0

St :=
∑n

i=1(|wt−1,i|+ ϵ)−1 to reduce tr(In/n) = tr(Q̃−1
t /St) = 1

The Regularization Term ψt

ψt(w) = λ ||w||Q2
t ,1

:= λ
n
∑

i=1

q2t,i|wi|, λ > 0. (13)

Qt := diag(qt,1 . . . , qt,n) ∈ Rn×n

The proximity operator for the ψt in (13)

proxQt

ηψt
(w) =

n
∑

i=1

eisgn(wi) [|wi|− qt,iλη]+ . (14)

{ei}ni=1 : the standard basis of Rn
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Proposed Algorithm Projection-based Dual Averaging (PDA)

The Hilbert spaces (R2, ⟨·, ·⟩In) and (R2, ⟨·, ·⟩Qt
)

(R2, ⟨·, ·⟩Qt
)(R2, ⟨·, ·⟩In)

Norm ANorm A

Norm B Norm BNorm CNorm C

w1

w2 w2

w1

w∗ w∗
* Norm A

||w||In,1 :=
∑n

i=1 |wi|
* Norm B

||w||Q1
t ,1

:=
∑n

i=1 qt,i|wi|
* Norm C (we employ)

||w||Q2
t ,1

:=
∑n

i=1 q
2
t,i|wi|

Norm A gives a fat unit ball in (R2, ⟨·, ·⟩Qt
):

The proximity operator shrinks the large component more than the small one.

Undesirable bias.

Norm C gives a tall unit ball in (R2, ⟨·, ·⟩Qt
):

Shrink the small components more.

Reduce the bias !
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Proposed Algorithm Relation to Prior Work

Relation to Prior Work

SGD type: SGD, NLMS, APA, PAPA

Sparsity-promoting: FBS (Forward Backward Splitting) type

FOBOS [1], AdaGrad-FBS [2], APFBS [3]

Dual Averaging type: Dual Averaging [4]

Sparsity-promoting: RDA (Regularized Dual Averaging) type

RDA [5], AdaGrad-RDA [2]

*bold : projection-based method

[1] Singer et al., 2009 [2] Duchi et al., 2011 [3] Murakami et al., 2010 [4] Nesterov, 2009 [5] Xiao, 2009

Ordinal Cost Function Projection-based
FBS type FOBOS, AdaGrad-FBS APFBS
RDA type RDA, AdaGrad-RDA
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Numerical Example

Numerical Example

Experiment:
1 Sparse-System Estimation (Simulated Data)
Model yt := w

T
∗
xt + νt ∈ R

- The proportion of the zero components of w∗ ∈ R1000 is 90%.
- The noise νt is zero-mean i.i.d. Gaussian with variance 0.01.

2 Echo Cancellation (Real Data)
- The sampling frequency of speech signal and echo path is 8000 Hz.
- The learning is stopped whenever the amplitude of input is below 10−4.
- The noise is zero-mean i.i.d. Gaussian with the signal noise ratio 20 dB.

Compared Algorithms: APA, PAPA, APFBS, RDA, AdaGrad-RDA

APA PAPA APFBS RDA AdaGrad-RDA PDA
Cost ϕt(w) ϕt(w) ϕt(w) ϕLS

t (w) ϕLS
t (w) ϕt(w)

Reg - - λ ||w||
Q2

t
,1

λ ||w||In,1 λ ||w||In,1 λ ||w||
Q2

t
,1
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Numerical Example

Experiment 1: Sparse -System Estimation
System Mismatch

APA PAPA
APFBS

RDA

AdaGrad-RDA PDA

||w∗ −wt||2In/||w∗||2In , w∗ is true parameter, wt is estimation at t.

PDA shows the best performance.
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Numerical Example

Experiment 1: Sparse -System Estimation
Proportion of the Zero Components of the Estimated Coefficient Vector

RDA
AdaGrad-RDA

PDA True (90%)

APA, PAPA, APFBS

Algorithms APA PAPA APFBS RDA AdaGrad-RDA PDA
Proportion 0% 0% 0% 11.6% 89% 90%

PDA achieve accurate sparsity.
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Numerical Example

Experiment 2: Echo Cancellation
Amplitudes of Speech Signal and Echo Path

(a) Speech signal (b) Echo path
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Numerical Example

Experiment 2: Echo Cancellation
System Mismatch

APA

PAPA APFBS

RDA

AdaGrad-RDA

PDA

PDA shows the best performance.
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Conclusion

Conclusion

Conclusion

We proposed the projection-based dual averaging (PDA) algorithm.
- projection-based: Input-vector normalization and the sparsity-seeking
variable-metric

- RDA: Better sparsity-seeking.

An application of PDA to an online regression problem was presented.
- The numerical examples demonstrated the better sparsity-seeking and
learning properties.

Future Work

Application to machine learning problems (classification).

Self-tuning method for λ and α.
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Appendix

Parameters for Experiments

Table: Parameters for sparse-system estimation.

Algorithms η λ α r δ ϵ

APA 0.16 - - 1 10−5 -
PAPA 0.14 - 0.8 1 10−5 10−5

APFBS 0.14 10−3 0.8 1 10−5 10−5

RDA 0.01 10−3 - - - -
AdaGrad 0.17 10−3 - - - -

PDA 0.13 3× 103 0.8 1 10−5 10−5

Table: Parameters for echo cancellation.

Algorithms η λ α r δ ϵ

APA 0.3 - - 2 10−15 -
PAPA 0.3 - 0.2 2 10−15 10−15

APFBS 0.2 10−2 0.3 2 10−15 10−15

RDA 1 10−4 - - - -
AdaGrad 0.3 10−4 - - - -

PDA 0.2 25.5 0.3 2 10−15 10−15
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