# Projection-based Dual Averaging For Stochastic Sparse Optimization

#### Asahi Ushio, Masahiro Yukawa

Dept. Electronics and Electrical Engineering, Keio University, Japan. E-mail: ushio@ykw.elec.keio.ac.jp, yukawa@elec.keio.ac.jp

The 42nd ICASSP, @New Orleans, LA, USA March 5-9, Mar, 2017

### Introduction

Background Now, we have many kinds of data (SNS, IoT, Digital News) [1].

 $\rightarrow\,$  Machine learning and signal processing become more important !

### Challenges (demands for algorithms)

- Process real-time streaming data.
- Achieve low complexity.
- Deal with **high-dimensionality** and **sparsity** of data.

[1] McKinsey, "Big Data: The next frontier for innovation, competition, and productivity," 2011.

### In Signal Processing ...

- Squared distance cost: Projection-based method ex) NLMS, APA, APFBS [2]
- Change Geometry: PAPA, Variable Metric [3]

#### In Machine Learning ...

- Regularized Dual Averaging (RDA) type: RDA [4]
- Forward Backward Splitting (FBS) type: FOBOS [5]
- **Change Geometry:**ADAGRAD [6]

[2] Murakami et al., 2010, [3] Yukawa et al., 2009, [4] Xiao, 2009, [5] Singer et al., 2009, [6] Duchi et al., 2011

# In Signal Processing ...

Background Now, we have many kinds of data (SNS, IoT, Digital News) [1].

 $\rightarrow\,$  Machine learning and signal processing become more important !

#### Challenges (demands for algorithms)

- Process real-time streaming data.
- Achieve low complexity.
- Deal with **high-dimensionality** and **sparsity** of data.

[1] McKinsey, "Big Data: The next frontier for innovation, competition, and productivity," 2011.

### In Signal Processing ...

- Squared distance cost: Projection-based method ex) NLMS, APA, APFBS [2]
- Change Geometry: PAPA, Variable Metric [3]

In Machine Learning ...

- Regularized Dual Averaging (RDA) type: RDA [4]
- Forward Backward Splitting (FBS) type: FOBOS [5]
- **Change Geometry:**ADAGRAD [6]

[2] Murakami et al., 2010, [3] Yukawa et al., 2009, [4] Xiao, 2009, [5] Singer et al., 2009, [6] Duchi et al., 2011

Introduction

### An Illustration of Projection-based Method

in case of online regression



Asahi Ushio, Masahiro Yukawa

## In Machine Learning ...

Background Now, we have many kinds of data (SNS, IoT, Digital News) [1].

 $\rightarrow\,$  Machine learning and signal processing become more important !

#### Challenges (demands for algorithms)

- Process real-time streaming data.
- Achieve low complexity.
- Deal with **high-dimensionality** and **sparsity** of data.

1 McKinsey, "Big Data: The next frontier for innovation, competition, and productivity," 2011.

In Signal Processing ...

- Squared distance cost: Projection-based method ex) NLMS, APA, APFBS [2]
- Change Geometry: PAPA, Variable Metric [3]

#### In Machine Learning ...

- Regularized Dual Averaging (RDA) type: RDA [4]
- Forward Backward Splitting (FBS) type: FOBOS [5]
- **Change Geometry:**ADAGRAD [6]

[2] Murakami et al., 2010, [3] Yukawa et al., 2009, [4] Xiao, 2009, [5] Singer et al., 2009, [6] Duchi et al., 2011

Introduction

## FBS type versus RDA type





• **FBS:** The effects of the proximity operator accumulate over the iterations.

Tradeoff between the sparsity level and the estimation accuracy.

**RDA:** FREE from the accumulation.

A high level of sparsity comes with high estimation accuracy !

### Abstract of This Work

#### Motivation

- **1 RDA:** Sparse solution.
- 2 Squared distance cost: Stable adaptation.
- **3** Variable metric: Promoting sparsity to improve the performance.

Combination of 3 properties.

Sparsity-promoting and stable learning !

**Proposed Algorithm** 

Projection-based Dual Averaging (PDA)

Features: RDA with Squared distance cost, employing variable metric.

Show efficacy by numerical examples (simulated data, real data).

Preliminaries

### Preliminaries

### Problem Setting : an online regularized optimization

$$\min_{\boldsymbol{w}\in\mathbb{R}^n}\mathbb{E}\left[\varphi_t(\boldsymbol{w})\right]+\psi_t(\boldsymbol{w}),\quad t\in\mathbb{N}$$

(1)

- $\psi_t, \varphi_t$  : a possibly nonsmooth function
- $oldsymbol{w}$  : supposed to be sparse or compressible

#### Basic Stochastic Optimization Methods

SGD

$$\boldsymbol{w}_t := \boldsymbol{w}_{t-1} - \eta \nabla \varphi_t(\boldsymbol{w}_{t-1}), \quad \eta > 0$$
(2)

**Dual Averaging** [1]  
$$\boldsymbol{w}_{t} := \operatorname*{arg min}_{\boldsymbol{w} \in \mathbb{R}^{n}} \left( \left\langle \frac{\sum_{i=1}^{t} \nabla \varphi_{i-1}(\boldsymbol{w}_{i-1})}{t}, \boldsymbol{w} \right\rangle + \mu_{t} h(\boldsymbol{w}) \right), \mu_{t} = \mathcal{O}\left(\frac{1}{\sqrt{t}}\right) \quad (3)$$
$$h(\boldsymbol{w}) : \text{ the prox-function}$$

[1] Y. Nesterov, "Primal-dual subgradient methods for convex problems", Mathematical Programming, 2009.

Preliminaries

### Projection-based Methods

### Cost Function of Projection-based Methods

• The  $Q_t$ -metric distance cost (normalized MSE in regression case).

$$\varphi_t(\boldsymbol{w}) := \frac{1}{2} d_{\boldsymbol{Q}_t}^2(\boldsymbol{w}, C_t)$$
(4)

$$d_{\boldsymbol{Q}_t}(\boldsymbol{w}, C_t) := \min_{\boldsymbol{z} \in C_t} ||\boldsymbol{w} - \boldsymbol{z}||_{\boldsymbol{Q}_t}$$
(5)

 $\begin{array}{ll} \boldsymbol{Q}_t \in \mathbb{R}^{n \times n} & : \text{ a positive definite matrix} \\ C_t \subset \mathbb{R}^n & : \text{ a closed convex set} \\ \boldsymbol{Q}_t \text{-norm for } \boldsymbol{w}, \boldsymbol{z} \in \mathbb{R}^n & : ||\boldsymbol{w}||_{\boldsymbol{Q}_t} := \sqrt{\langle \boldsymbol{w}, \boldsymbol{w} \rangle_{\boldsymbol{Q}_t}}, \langle \boldsymbol{w}, \boldsymbol{z} \rangle_{\boldsymbol{Q}_t} := \sqrt{\boldsymbol{w}^{\mathsf{T}} \boldsymbol{Q}_t \boldsymbol{z}} \end{array}$ 

#### Gradient Calculation

**The**  $Q_t$ -gradient of  $\varphi_t$ 

$$\boldsymbol{g}_t := \nabla_{\boldsymbol{Q}_t} \varphi_t(\boldsymbol{w}_{t-1}) = \boldsymbol{w}_{t-1} - P_{C_t}^{\boldsymbol{Q}_t}(\boldsymbol{w}_{t-1}), \quad \boldsymbol{w}_{t-1} \in \mathbb{R}^n.$$
(6)

**The**  $Q_t$ -projection onto  $C_t$ 

$$P_{C_t}^{\boldsymbol{Q}_t}(\boldsymbol{w}) := \arg\min_{\boldsymbol{z}\in\mathcal{C}_t} ||\boldsymbol{w}-\boldsymbol{z}||_{\boldsymbol{Q}_t}.$$
 (7)

### Proposed Algorithm

### Projection-based Dual Averaging (PDA)

$$\boldsymbol{w}_{t} := \operatorname*{arg min}_{\boldsymbol{w} \in \mathbb{R}^{n}} \left( \langle \boldsymbol{s}_{t}, \boldsymbol{w} \rangle_{\boldsymbol{Q}_{t}} + \frac{||\boldsymbol{w}||_{\boldsymbol{Q}_{t}}^{2}}{2\eta} + \psi_{t}(\boldsymbol{w}) \right)$$
  
$$= \operatorname*{arg min}_{\boldsymbol{w} \in \mathbb{R}^{n}} \left( \eta \psi_{t}(\boldsymbol{w}) + \frac{1}{2} ||\boldsymbol{w} + \eta \boldsymbol{s}_{t}||_{\boldsymbol{Q}_{t}}^{2} \right)$$
  
$$= \operatorname{prox}_{\eta \psi_{t}}^{\boldsymbol{Q}_{t}} (-\eta \boldsymbol{s}_{t}), \quad \boldsymbol{s}_{t} = \sum_{i=1}^{t} \nabla_{\boldsymbol{Q}_{t}} \varphi_{i-1}(\boldsymbol{w}_{i-1}), \quad \eta \in [0, 2] \quad (8)$$

The proximity operator

$$\operatorname{prox}_{\eta\psi_{t}}^{\boldsymbol{Q}_{t}}(\boldsymbol{w}) := \operatorname*{arg\,min}_{\boldsymbol{z}\in\mathbb{R}^{n}} \left( \eta\psi_{t}(\boldsymbol{w}) + \frac{1}{2} \left|\left|\boldsymbol{w}-\boldsymbol{z}\right|\right|_{\boldsymbol{Q}_{t}}^{2} \right), \quad \forall \boldsymbol{w}\in\mathbb{R}^{n}.$$
(9)

### Application to Online Regression

#### Problem Setting : Online Regression

$$\boldsymbol{y}_t := \boldsymbol{w}_*^\mathsf{T} \boldsymbol{x}_t + 
u_t \in \mathbb{R}$$

 $y_t \in \mathbb{R}$  : the output  $w_* \in \mathbb{R}^n$  : the unknown vector  $\nu_{t} \in \mathbb{R}$ 

#### $\boldsymbol{x}_t \in \mathbb{R}^n$ : the input vector

· the additive white noise

#### Definition of the Projection

$$C_t := \arg\min_{\boldsymbol{w}\in\mathbb{R}^n} ||\boldsymbol{X}^{\mathsf{T}}\boldsymbol{w} - \boldsymbol{y}_t||_{\boldsymbol{I}_n}.$$
 (10)

$$egin{aligned} oldsymbol{X}_t & := [oldsymbol{x}_t \cdots oldsymbol{x}_{t-r+1}] \in \mathbb{R}^{n imes r} \ oldsymbol{y}_t & := [y_t, \dots, y_{t-r+1}]^\mathsf{T} \in \mathbb{R}^r \end{aligned}$$

**The projection onto**  $C_t$ 

$$P_{C_t}^{\mathbf{Q}_t}(\boldsymbol{w}_{t-1}) := \boldsymbol{w}_{t-1} - \boldsymbol{Q}_t^{-1} \boldsymbol{X}_t^{\dagger} (\boldsymbol{X}_t^{\mathsf{T}} \boldsymbol{w}_{t-1} - \boldsymbol{y}_t).$$
(11)

**The Moore-Penrose pseudo-inverse**  $X_t^{\dagger}$ 

$$\boldsymbol{X}_t(\boldsymbol{X}_t^{\mathsf{T}}\boldsymbol{Q}_t^{-1}\boldsymbol{X}_t + \delta \boldsymbol{I}_n)^{-1}, \quad \delta > 0.$$

### Design of Metric $oldsymbol{Q}_t$ & Regularizer $\psi_t$

Design of metric  $Q_t$  (following [Yukawa *et al.* 2010])

$$\boldsymbol{Q}_t := \frac{\alpha}{n} \boldsymbol{I}_n + \frac{1-\alpha}{S_t} \tilde{\boldsymbol{Q}}_t^{-1}, \quad \alpha \in [0,1].$$
(12)

$$\begin{split} & \tilde{\boldsymbol{Q}}_t := \operatorname{diag}(|w_{t-1,1}|, \dots, |w_{t-1,n}|) + \epsilon \boldsymbol{I}_n \text{ for some } \epsilon > 0 \\ & \boldsymbol{S}_t := \sum_{i=1}^n (|w_{t-1,i}| + \epsilon)^{-1} \text{ to reduce } \operatorname{tr}(\boldsymbol{I}_n/n) = \operatorname{tr}(\tilde{\boldsymbol{Q}}_t^{-1}/S_t) = 1 \end{split}$$

The Regularization Term  $\psi_t$ 

$$\psi_t(\boldsymbol{w}) = \lambda ||\boldsymbol{w}||_{\boldsymbol{Q}_t^2, 1} := \lambda \sum_{i=1}^n q_{t,i}^2 |w_i|, \quad \lambda > 0.$$
(13)

■ 
$$Q_t := \operatorname{diag}(q_{t,1}, \dots, q_{t,n}) \in \mathbb{R}^{n \times n}$$
  
■ The proximity operator for the  $\psi_t$  in (13)  
 $\operatorname{prox}_{\eta\psi_t}^{Q_t}(w) = \sum_{i=1}^n e_i \operatorname{sgn}(w_i) [|w_i| - q_{t,i}\lambda\eta]_+.$  (14)  
■  $\{e_i\}_{i=1}^n$ : the standard basis of  $\mathbb{R}^n$ 

# The Hilbert spaces $(\mathbb{R}^2, \langle \cdot, \cdot \rangle_{I_n})$ and $(\mathbb{R}^2, \langle \cdot, \cdot \rangle_{O_t})$



- \* Norm A
  - $||\boldsymbol{w}||_{\boldsymbol{I}_n,1} := \sum_{i=1}^n |w_i|$
- \* Norm B  $||w||_{Q_t^{1,1}} := \sum_{i=1}^n q_{t,i}|w_i|$
- \* Norm C (we employ)  $||w||_{Q_{t,1}^2} := \sum_{i=1}^{n} q_{t,i}^2 |w_i|$

■ Norm A gives a fat unit ball in (ℝ<sup>2</sup>, (·, ·)<sub>Q<sub>t</sub></sub>): The proximity operator shrinks the large component more than the small one.

#### Undesirable bias.

**Norm C** gives a **tall** unit ball in  $(\mathbb{R}^2, \langle \cdot, \cdot \rangle_{Q_t})$ : Shrink the small components more.

#### Reduce the bias !

### Relation to Prior Work

SGD type: SGD, NLMS, APA, PAPA

Sparsity-promoting: FBS (Forward Backward Splitting) type FOBOS [1], ADAGRAD-FBS [2], **APFBS** [3]

Dual Averaging type: Dual Averaging [4]

Sparsity-promoting: RDA (Regularized Dual Averaging) type RDA [5], ADAGRAD-RDA [2]

\*bold : projection-based method

[1] Singer et al., 2009 [2] Duchi et al., 2011 [3] Murakami et al., 2010 [4] Nesterov, 2009 [5] Xiao, 2009

|          | Ordinal Cost Function | Projection-based |  |
|----------|-----------------------|------------------|--|
| FBS type | FOBOS, ADAGRAD-FBS    | APFBS            |  |
| RDA type | RDA, AdaGrad-RDA      |                  |  |

### Relation to Prior Work

SGD type: SGD, NLMS, APA, PAPA

Sparsity-promoting: FBS (Forward Backward Splitting) type FOBOS [1], ADAGRAD-FBS [2], **APFBS** [3]

Dual Averaging type: Dual Averaging [4]

Sparsity-promoting: RDA (Regularized Dual Averaging) type RDA [5], ADAGRAD-RDA [2], PDA

\*bold : projection-based method

[1] Singer et al., 2009 [2] Duchi et al., 2011 [3] Murakami et al., 2010 [4] Nesterov, 2009 [5] Xiao, 2009

|          | Ordinal Cost Function | Projection-based |
|----------|-----------------------|------------------|
| FBS type | FOBOS, ADAGRAD-FBS    | APFBS            |
| RDA type | RDA, AdaGrad-RDA      | PDA              |

### Numerical Example



# Experiment 1: Sparse - System Estimation System Mismatch



 $||w_* - w_t||_{I_n}^2 / ||w_*||_{I_n}^2, w_* \text{ is true parameter, } w_t \text{ is estimation at } t.$ | PDA shows the best performance.

### Experiment 1: Sparse -System Estimation

Proportion of the Zero Components of the Estimated Coefficient Vector



#### PDA achieve accurate sparsity.

# Experiment 2: Echo Cancellation

Amplitudes of Speech Signal and Echo Path



### Experiment 2: Echo Cancellation

#### System Mismatch



#### PDA shows the best performance.

Conclusion

### Conclusion

#### Conclusion

- We proposed the **projection-based dual averaging (PDA)** algorithm.
  - projection-based: Input-vector normalization and the sparsity-seeking variable-metric
  - RDA: Better sparsity-seeking.
- An application of PDA to an online regression problem was presented.
  - The numerical examples demonstrated the **better sparsity-seeking** and **learning properties**.

#### Future Work

- Application to machine learning problems (classification).
- Self-tuning method for  $\lambda$  and  $\alpha$ .

Appendix

### Parameters for Experiments

#### Table: Parameters for sparse-system estimation.

| Algorithms | $\eta$ | $\lambda$       | $\alpha$ | r | δ         | $\epsilon$ |
|------------|--------|-----------------|----------|---|-----------|------------|
| APA        | 0.16   | -               | -        | 1 | $10^{-5}$ | -          |
| PAPA       | 0.14   | -               | 0.8      | 1 | $10^{-5}$ | $10^{-5}$  |
| APFBS      | 0.14   | $10^{-3}$       | 0.8      | 1 | $10^{-5}$ | $10^{-5}$  |
| RDA        | 0.01   | $10^{-3}$       | -        | - | -         | -          |
| AdaGrad    | 0.17   | $10^{-3}$       | -        | - | -         | -          |
| PDA        | 0.13   | $3 \times 10^3$ | 0.8      | 1 | $10^{-5}$ | $10^{-5}$  |

Table: Parameters for echo cancellation.

| Algorithms | $\eta$ | $\lambda$ | $\alpha$ | r | δ          | $\epsilon$ |
|------------|--------|-----------|----------|---|------------|------------|
| APA        | 0.3    | -         | -        | 2 | $10^{-15}$ | -          |
| PAPA       | 0.3    | -         | 0.2      | 2 | $10^{-15}$ | $10^{-15}$ |
| APFBS      | 0.2    | $10^{-2}$ | 0.3      | 2 | $10^{-15}$ | $10^{-15}$ |
| RDA        | 1      | $10^{-4}$ | -        | - | -          | -          |
| AdaGrad    | 0.3    | $10^{-4}$ | -        | - | -          | -          |
| PDA        | 0.2    | 25.5      | 0.3      | 2 | $10^{-15}$ | $10^{-15}$ |