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ABSTRACT

In this paper, a framework for regularized stochastic optimization based on the

regularized dual averaging (RDA) is presented. Our approach differs from the pre-

vious studies of RDA in three aspects. First, the squared-distance function to a

closed convex set is employed as a part of the objective functions for stable learn-

ing. In the particular application of online regression, the squared-distance function

is reduced to a normalized version of the typical squared-error (least square) func-

tion. Second, since the squared-distance function is second-differentiable, the step

size can be constant. The original RDA framework, however, has undesirable in-

crease of regularizer with a constant step size. Our approach are modified to be

the regularization effect stable. Third, a sparsity-promoting metric is employed,

originated from the proportionate-type adaptive filtering algorithms, and propose a

weighted ℓ1 regularization, which can enhance sparsity efficiently under a sparsity-

promoting metric.

The three differences yield a better sparsity-seeking capability, leading to im-

proved convergence properties. Extensive experiments such as classification and

regression problem show the advantages of the proposed algorithm over the exist-

ing methods including AdaGrad and adaptive proximal forward-backward splitting

(APFBS).
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Chapter 1

Introduction

Stochastic optimization (stochastic approximation [1] more in general) has drawn

growing attention over the past years due particularly to the recent data deluge [2].

There are various kinds of stochastic optimization such as quasi-Newton method,

which exploits an approximate the Hessian matrix, such as finite difference method

based algorithms (SGD-QN [3], AdaDelta [4], and variance-based SGD [5, 6]),

extended Gauss-Newton based algorithms [7–9], and stochastic LBFGS (Broyden

Fletcher Goldfarb Shanno) [10–12]. Besides Hessian approximation, natural gra-

dient methods [13–15] approximate the Fisher information matrix, and AdaGrad

[16], RMSprop [17], and Adam [18] employ the root-mean-square (RMS) of the

previous gradients. These methods can be seen as changing the geometry sequen-

tially to improve the convergence, which is generally recognized as the variable-

metric method [22, 23]. One can see that recently proposed algorithms can be

characterized by the metric to be employed such as the Hessian [3–12], the Fisher

information matrix [13–15], and RMS of the previous gradients [16–18].

We focus on the case where the solution to be estimated by stochastic opti-

mization, is “sparse”; i.e., many components are zero. This often happens in a

wide range of applications such as echo cancellation, channel estimation, text clas-

sification, etc. Sparseness has been exploited in adaptive filtering [19–21] which is

closely related to stochastic optimization. The algorithms in [19–21] can also be

regarded as variable-metric methods [22, 23]. More recently, sparsity-aware algo-

rithms have been studied for stochastic optimization and online learning, including

the adaptive proximal forward-backward splitting (APFBS) method [24, 25], the

forward looking subgradients and forward backward splitting method (FOBOS)

[26], and the regularized dual averaging (RDA) method [27]. In particular, the idea

of RDA comes originally from the primal-dual subgradient methods [28] of Nes-

terov, and it is known to yield a sparser solution than the FOBOS method [27]. An

approach similar to RDA is known as the follow-the-regularized-leader in online

convex optimization [29]. Although RDA yields a sparse solution for some loss

functions, the regularization parameter increases as time goes by when the loss

function is smooth, resulting in an undesirably sparse solution (see Section ?? for

more in detail). We address this issue and presents stochastic regularized optimiza-

tion framework, in which we achieve fixed amount of regularization regardless of

4



CHAPTER 1. INTRODUCTION 5

a step size.

It is widely known that the normalized least mean square (NLMS) algorithm

[30, 31] often performs better and is more stable than the classical stochastic gra-

dient descent (SGD) method referred to as the least mean square (LMS) algorithm

[32]. The NLMS algorithm is usually derived based the so-called minimum distur-

bance principle [33], and operates iterative projections onto zero-instantaneous-

error hyperplanes. In the present study, we highlight the fact that NLMS can

be regarded as a SGD method for “normalized” squared errors, or equivalently

the squared distances to the zero-instantaneous-error hyperplanes. The squared

distance functions have actually been considered in the studies of the adaptive

projected subgradient method (APSM) [34–36], which also handles ordinary dis-

tances, and APFBS.

In this paper, we present a stochastic regularized optimization algorithm named

projection-based regularized dual averaging (PDA). We consider the squared-metric-

distance to the random closed convex set, where the randomness comes from the

measurements. To be precise, we consider a specific stochastic optimization prob-

lem of minimizing the expectation of the squared distance function penalized by

some convex regularizer. Here, the distance is defined with a time-dependent met-

ric, which is denoted by Qt, that is designed to promote sparsity of our estimates.

As a result, the estimation is updated with the Qt-gradient of the squared-distance

function. We mention that metric Qt causes undesirable biases when a usual spar-

sity promoting regularizer is adopted such as the unweighted ℓ1-norm. (see Sec-

tion 3.3 for more in detail). To offset the undesirable biases due to the metric Qt,

PDA update involves weighted regularization by the squared diagonal elements of

Qt.

PDA is also designed to attain a fixed amount of regularization with a constant

step size, while the ordinary RDA keeps increasing the amount of regularization.

The key ingredients of the proposed algorithm are summarized as (i) normaliza-

tion of the input vector, (ii) variable-metric, and (iii) a fixed regularization with a

constant step size.

This makes three practical advantages in stochastic optimization involving sparse

structures. First, the use of the squared-distance function avoids such a situation

that the gradient vector becomes undesirably large for large inputs, stabilizing the

algorithm. Second, the use of Qt-metric and weighted ℓ1 regularizer guides the

update direction towards the true (sparse) solution. Assembling them together, the

proposed algorithm enjoys a notable sparsity-seeking property. Third, making the

regularization parameter constant prevents our estimates from being too sparse.

Extensive simulations, which include regression and classification problems with

several real data show the advantages of the proposed algorithm.



Chapter 2

Preliminaries

We denote by Ra×b the set of real a × b matrices, by N the set of all nonnegative

integers, and N∗ := N \ {0}. We denote by 〈w, z〉Q := wTQz the inner product

for w, z ∈ Rn with a positive definite matrix Q and ||w||Q :=
√

〈w,w〉Q the Q-

norm induced by 〈w, z〉Q. Also, we denote by wT the transpose of a vector w :=

[w1,w2, · · · ,wn]T ∈ Rn.

2.1 Problem Formulation

We consider the following stochastic regularized optimization problem:

min
w∈Rn
Ez

[
ϕ(w, z)

]
+ ψ(w), (2.1)

where Ez stands for expectation of z := (x, y), which is an input-output pair from

an unknown underlying distribution, ϕ is a possibly nonsmooth loss function , and

ψ is a possibly nonsmooth regularizer. We denote zτ := (xτ, yτ) an observation of z

at the time index τ = 1, 2, · · · , t. We consider the following problem to minimize

the empirical loss:

min
w∈Rn

1

t

t∑

τ=1

[
ϕτ(w)

]
+ ψ(w), (2.2)

where ϕτ(w) = ϕ(w, zτ).

2.2 Regularized Dual Averaging

To solve (2.1) in the case of ψ = 0, (i.e., the case of unstochastic regularized

optimization problems) Nesterov has proposed the dual averaging method in [28],

which aims to minimize

lt(w) :=
1

t

t∑

τ=1

[
ϕτ(wτ) + 〈gτ,w − wτ〉I

]
. (2.3)

6
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Figure 2.1: The anti-gradients for a large input vector.

The lower linear model (2.3) is an average of affine minorants of ϕτ(w). The simple

dual averaging update is given by

wt : = arg min
w∈Rn

(

lt(w) +
βt

t
h(w)

)

= arg min
w∈Rn

(〈
st

t
,w

〉

I
+
βt

t
h(w)

)

, (2.4)

where (βτ)τ∈N∗ is a nonnegative and non-decreasing sequence, st :=
∑t
τ=1 gτ, and

h(w) is the so-called prox-function, which determines the distance. In [27], Xiao

has proposed RDA, which is an extension of dual averaging to the stochastic reg-

ularized optimization with a time-invariant regularizer ψ. The update equation of

RDA is defined as

wt := arg min
w∈Rn

(〈

st

βt

,w

〉

I

+ h(w) +
t

βt

ψ(w)

)

. (2.5)

2.3 Projection-based Method

The loss function ϕt(w) is, in many cases, chosen depending on problems. For

instance, squared loss is usually used for the regression problem and hinge loss

or logistic loss for the classification problem. However, instead of choosing the

loss function directly based on the problem, there is more sophisticated methods to

define loss functions, which is called projection-based method [37].

With a time variant positive definite matrix Qt, the Qt-metric distances can be

defined as dQt
(w,Ct) := min

z∈Ct

||w − z||Qt
between an arbitrary point w ∈ Rn and a

closed convex set Ct ⊂ Rn. Then, projection-based method use the loss function

defined as

ϕt(w) :=
1

2
d2

Qt
(w,Ct). (2.6)

The Qt-gradient of ϕt at the previous estimate wt−1 ∈ Rn is given by

gt := ∇Qt
ϕt(wt−1) = wt−1 − P

Qt

Ct
(wt−1), (2.7)
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where P
Qt

Ct
(w) := arg min

z∈Ct

||w − z||Qt
is the Qt-projection onto Ct. In the case of

ψt = 0, the SGD update is given by

wt := wt−1 − ηgt. (2.8)

Unlike the case of ordinary loss functions where the step size is bounded depend-

ing on measurements, the step size η is simply restricted in the range of [0, 2] in

projection-based method. Note here that the projection operator is nonexpansive

w.r.t. ||·||Qt
(i.e., Lipschitz continuous with constant 1), and the gradient operator

∇Qt
ϕt is also nonexpansive. The gradient vector has the following property:

gt = 0⇔ P
Qt

Ct
(wt−1) = wt−1 ⇔ wt−1 ∈ Ct. (2.9)

The convergence of projection-based method (2.8) with η ∈ [0, 2] is ensured by the

property (2.9) and the nonexpansivity of ∇Qt
ϕt.

We, then, introduce an application for the regression problem and note merits

of projection-based method. Let xt ∈ Rn be the input vector, and yt := wT
∗ xt+νt ∈ R

is the output at time instant t with the unknown vector w∗ ∈ Rn and the additive

noise νt ∈ R. For the regression problem, projection-based method uses

Ct := arg min
w∈Rn

∣
∣
∣

∣
∣
∣XT

t w − yt

∣
∣
∣

∣
∣
∣
2

I
(2.10)

where Xt := [xt, xt−1, · · · , xt−r+1] ∈ Rn×r and yt := [yt, yt−1 · · · , yt−r+1]T ∈ Rr for

some r ∈ N∗. The Qt-gradient gt for (2.10) can be seen as an ordinary gradient

for a loss function. For instance, in the case of r = 1, gt becomes the gradient of

normalized squared loss

ϕNSL
t (w) =

(

yt − wTxt

)2

2 ||xt||2Qt

(2.11)

and (2.8) is reduced to the (improved) proportionate NLMS (PNLMS) algorithms

[19, 20, 38]. Figure 2.1 shows the difference among the anti-gradient vectors −∇ϕSL
t (w),

with ϕSL
t (w) :=

(

yt − wTxt

)2
/2, which is squared loss used as ordinary loss for the

regression problem, −∇ϕNSL
t (w) with a fixed metric (Qt = I), and −∇Qt

ϕNSL
t (w).

The gradient of ϕSL
t (w) can be disturbed by large inputs, which makes the algorithm

unstable. The squared-distance cost (2.6) robustifies the gradient against large in-

puts. In addition, the metric Qt guides the update direction towards the optimal

point w∗, leading to convergence acceleration. When the (improved) proportionate

NLMS (PNLMS) algorithms [19, 20, 38].

If r ≥ 2, the algorithm (2.8) with (2.10) is reduced to the proportionate affine

projection algorithm (PAPA) [39, 40]. If the metric is Euclidean, PAPA and PNLMS

are further reduced to the affine projection algorithm (APA) [41, 42] and NLMS,

respectively. For the classification case, the passive aggressive algorithm [43] uses

a half-space where the instantaneous error is zero as Ct to derive algorithm to solve

classification problems.



Chapter 3

Projection-based Regularized

Dual Averaging

We present the proposed algorithm, called PDA, which is a projection-based stochas-

tic regularized optimization framework based on the dual averaging. We start the

derivation of PDA from generalizing RDA framework (2.5) in Section 3.1. Then,

we point out problems of RDA (remark 1), which have not been discussed in any

previous studies yet. We shows the proposed algorithm, PDA in Section 3.2.

In Section 3.3, we investigate a sparsity-promoting metric Qt in terms of the

relation to the regularizer. Applications for regression and classification problems

are shown in Section 3.4, the complexity of PDA is discussed in Section 3.5, and

relations to prior works (AdaGrad [16] and APFBS [25, 44]) in Section 3.6. We

also give the regret analysis of PDA in Appendix A.1.

3.1 Generalized RDA

In RDA framework (2.5), 1/βt behaves as the step size but unlike SGD, in which

gt is scaled by the step size ηt, st is scaled by 1/βt, that means 1/βt is uniformly

distributed to all (sub)gradients (gτ)τ∈N∗ .

Remark 1. Although βt in (2.5) is not restricted to a particular case,
√

t/η with

a constant η is used for practical cases in [27]. In this case, since βt ∼ O(
√

t),

the strength of the regularizer increases by t/βt ∼ O(
√

t). Here we point out the

problem that even though the choice βt ∼ O(
√

t) works well, since the strength of

the regularizer t/βt increases depending on βt, it is difficult to control the effect of

regularization in general cases. For instance, if βt is a constant, t/βt increase by

O(t), this interrupts the solution to be updated.

To see the effect of the issue mentioned in remark 1, we generalize (2.5) as

wt := arg min
w∈Rn

(〈
η

tb
st,w

〉

I
+ h(w) + ηtaψ(w)

)

. (3.1)

9
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Figure 3.1: System mismatch (left) and proportion of zero components (right) for

sparse system identification.

Table 3.1: Parameters for generalized RDA simulation.

η λ

a = 0.5, b = 0.5 10−4 104

a = 1, b = 0 10−3 104

a = 0, b = 0 10−3 5 × 10−1

a = 0, b = 0.5 10−4 5 × 10−3

where η, a, and b are constants. We call this framework (3.2) as generalized RDA.

Note that in the case of a = 1 − b, generalized RDA (3.2) corresponds to orig-

inal RDA framework, a = 0.5, b = 0.5 is RDA algorithm practically used in

[27] (βt =
√

t/η), and a = 1, b = 0 is RDA algorithm with a constant βt = 1/η.

Figure 3.1 shows the result for sparse system identification (online regression prob-

lem) with squared loss and ℓ1 regularization λ
∑n

i=1 wi for λ > 0 as ψ, comparing

four settings of generalized RDA (see Section 4.2.1 for more detail about the ex-

periment setting). Parameters (Table 3.1) are set to achieve the best performance in

terms of system mismatch at the end of iteration. All of experiments in this paper

uses h(w) := ||w||2 /2, so (3.1) can be reduced to

wt = arg min
w∈Rn

(

1

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
w +

η

tb
st

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

I
+ ηtaψ(w)

)

= prox
It

ηtaψ

(

− η
tb

st

)

. (3.2)

In SGD, if the objective loss function ϕ is twice-differentiable, it is more suitable

to use a constant step size, which is at least smaller than 2/σmax where σmax is the

maximum eigenvalue of Hessian matrix of ϕ than arbitrary scheduling a decreasing
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(R2, 〈·, ·〉Qt
)(R2, 〈·, ·〉I)

||w||I,1||w||I,1

||w||Q1
t ,1

||w||Q1
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||w||Q2
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t ,1

w1

w2 w2

w1

w∗

w∗

Figure 3.2: Unit balls for different norms in (R2, 〈·, ·〉Qt
) and (R2, 〈·, ·〉I) in the case

of qt,1 < qt,2.

step size sequence. The result shows that, as in the case of SGD, since we use the

squared loss, which is twice-differentiable, a constant βt (a = 1, b = 0) effective in

RDA that achieves much higher accuracy than an increasing βt (a = 0.5, b = 0.5).

Moreover, generalized RDA with a = 0, b = 0 improve the performance, since

by letting b = 0, we can prevent the increase of regularization effect discussed in

remark 1, which becomes non negligible effect when βt is a constant. Based on

the RDA analysis in this section, we propose new framework for the stochastic

regularized optimization in next section.

3.2 PDA

We present the proposed framework, projection-based regularized dual averaging

(PDA). PDA is based on RDA but there are essential differences between them.

First, while original RDA [27] is considered to use ordinary loss, we employ

projection-based method (2.6) as the loss function to enhance sparsity by vari-

able metric and achieve stable learning. As far as we know, there are no algorithm,

which use projection-based method in the framework of dual averaging, except

PDA. Second, we know that RDA can be improved by a constant βt in the case

of twice-differentiable objective loss function from the investigation for RDA in

Section 3.1. It is desired to uses a constant step size for PDA, since (2.6) is twice-

differentiable. Then, with a constant 1/η as βτ for all τ ∈ N∗, RDA (2.5) becomes

wt : = arg min
w∈Rn

(

〈ηst,w〉Qt
+

1

2
||w||2Qt

+ ηtψ(w)

)

. (3.3)

We know that, however, by Section 3.1 RDA has undesirable increase of regu-

larization with a constant step size, which degrades performance. As we mentioned

in remark 1, the strength of the regularizer increases depending on βt, we need to

schedule βt so as not to interrupt the update of coefficients. We thus further modify
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(3.3) by removing t multiplied ηψ in the third term (3.3) to keep constant strength

of ψ regardless of any βt. Finally, the update equation of PDA is given by

wt : = arg min
w∈Rn

(

〈st,w〉Qt
+

1

2η
||w||2Qt

+ ψt(w)

)

= arg min
w∈Rn

(

ηψt(w) +
1

2
||w + ηst||2Qt

)

= prox
Qt

ηψt
(−ηst), (3.4)

where gt is defined as (2.7) and wt is initialized by arbitrary vector w0. In the

generalized RDA framework (3.2), this modified RDA corresponds to the case of

a = 0, b = 0. The key ideas of PDA are summarized as below:

• Projection-based method, which enable high stability of learning, with vari-

able metric to enhance sparsity

• RDA based algorithm with constant βt and removal of increasing term mul-

tiplied regularizer, by which the solution will not be extensively sparse.

Table 3.2 summarizes the PDA algorithm.

3.3 Weighted ℓ1 Regularizer under Sparsity-promoting Met-

ric

We propose weighted ℓ1 regularizer to perform reasonable regularization under a

sparsity-promoting metric. Let Qt be a diagonal matrix Qt := diag(qt,1, qt,2, · · · , qt,n).

The metric is designed as follows [45, 46]:

Q−1
t :=

(

αI + n
1 − α

S t

Q̃−1
t

)−1

, (3.5)

where Q̃t := diag(|wt−1,1 |, |wt−1,2|, · · · , |wt−1,n|) + ǫI for some ǫ > 0, α ∈ [0, 1],

and S t :=
∑n

i=1(|wt−1,i| + ǫ)−1. Figure 3.2 illustrates the unit balls for three norms

in the Hilbert spaces (R2, 〈·, ·〉I) and (R2, 〈·, ·〉Qt
): the ℓ1 norm ||w||I,1 :=

∑n
i=1 |wi|,

a weighted ℓ1 norm ||w||Q1
t ,1

:=
∑n

i=1 qt,i|wi|, and ||w||Q2
t ,1

:=
∑n

i=1 q2
t,i
|wi|. One can

see that the ℓ1 ball has a “fat” shape in (R2, 〈·, ·〉Qt
). This actually forces the prox-

imity operator to shrink large components more than small components, yielding

undesirable biases. To avoid it and to shrink small components, we design the

regularizer as follows:

ψt(w) = λ ||w||Q2
t ,1

:= λ

n∑

i=1

q2
t,i|wi|, (3.6)

where λ > 0 is the regularization parameter. The unit ball of the norm ||w||Q2
t ,1

in

(3.6) has a “tall” shape in (R2, 〈·, ·〉Qt
). The proximity operator for the ψt in (3.6) is
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Table 3.2: PDA algorithm.

Requirement: λ > 0, η ∈ [0, 2], α ∈ [0, 1]

r ∈ N∗, δ > 0

Initialization: Initialize s0 and w0.

Iteration: For τ = 1, 2, · · · , t
1. gτ := wτ−1 − P

Qτ

Cτ
(wτ−1)

2. sτ = sτ−1 + gτ

3. wτ := prox
Qτ

ηψτ
(−ηsτ)

given by

prox
Qt

ηψt
(w) =

n∑

i=1

eisgn(wi)
[|wi| − qt,iλη

]

+ , (3.7)

where {ei}ni=1
is the standard basis of Rn, sgn(·) is the signum function, and [·]+ :=

max{·, 0} is the hinge function.

3.4 Applications to Regression and Classification

In the case of an online regression problem, we can use (2.10) as Ct and the pro-

jection onto Ct is given by

P
Qt

Ct
(wt−1) := wt−1 − Q−1

t X
†
t (XT

t wt−1 − yt), (3.8)

where X
†
t is the Moore-Penrose pseudo-inverse. In practice, X

†
t is replaced by

Xt(XT
t Q−1

t Xt + δI)−1, where δ > 0 is the regularization parameter for numerical

stability. We also apply the PDA algorithm to an online classification problem. Let

yt ∈ {−1, 1} and define

Ct :=
{

w ∈ Rn | ytw
Txt ≥ 1

}

. (3.9)

The projection onto Ct is given by

P
Qt

Ct
(wt−1) := wt−1 − Q−1

t xt

[

1 − ytw
T
t xt

]

+

yt ||xt||2Q−1
t

(3.10)

The Qt-gradient gt for (3.9) can be seen as an ordinary gradient for

ϕt(w) =

([

ytw
Txt − 1

]

+

)2

2 ||xt ||2Q−1
t

. (3.11)
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Table 3.3: Computational complexity.

Algorithms number of multiplication

PDA 4n + 3nr + nr2 + r2, O(n) (if r = 1)

RDA, AdaGrad, and FOBOS O(n)

3.5 Computational Complexity

The computational complexity for PDA is nr for error calculation, nr2 for normal-

ization of inputs, r2 + nr for updating wt, 2n for proximity operator, and 2n for

metric derivation. In total, the computational complexity is 4n + 3nr + nr2 + r2

multiplications. In the case of Qt = I, the complexity of PDA can be reduced to

n + 2nr + nr2 + r2. Since r is usually small integer (we use r = 1 for all experi-

ments except for echo cancellation experiment, which uses r = 2), the complexity

can be regarded as O(n). The computational complexity O(n) is a typical choice

comparing other stochastic regularized optimizations such as AdaGrad, RDA, and

FOBOS. Table 3.3 summarizes the computational complexity for PDA and other

algorithms.

3.6 Relation to Prior Work

3.6.1 APFBS

One can apply the iterates wt := prox
Qt

ηψt
(wt−1 − ηgt) to (2.1). This is actually

a special case of APFBS [24, 25], which resembles the FOBOS algorithm [26]

in the sense of using forward-backward splitting for online tasks. Note however

that APFBS explicitly uses (the sum of multiple) squared-distance functions to-

gether with variable metrics, whereas FOBOS considers the squared loss ϕSL
t for

regression. APFBS is a projection-based forward-backward splitting algorithm,

while PDA is based on RDA [27] (see Appendix A.2 about the difference between

forward-backward splitting and RDA).

3.6.2 AdaGrad

AdaGrad [16] is one of the celebrated online learning methods in machine learn-

ing. The idea is to reduce the variance of the (sub)gradient vector by summing

up the outer-products of the history of the (sub)gradient vectors to build a met-

ric. The AdaGrad algorithm was applied to two types of algorithms: RDA and

the composite mirror descent [47, 48] (which is a generalization of FOBOS [26]).

AdaGrad-RDA has some similarities to the proposed method in the sense that both

methods are based on RDA and employs variable metrics. However, AdaGrad-

RDA uses the ordinary squared loss ϕSL
t (w) as well as the metric used in AdaGrad

is different from that used in PDA.



Chapter 4

Experiments

We show the efficacy of the proposed algorithm PDA in classification and regres-

sion tasks. First, we show the result on classification tasks, in which we use MNIST

hand written digit dataset [49] and RCV text dataset [50]. Then, we show the re-

sult on regression tasks, which include experiments on sparse system identification

problem, an acoustic echo cancellation problem, and nonlinear model estimation

by multi-kernel adaptive filtering [51]. We use 10−5 for numerical stability param-

eter in all experiments.

4.1 Classification

In classification tasks, we compare the proposed algorithm with RDA [27], AdaGrad-

RDA [16], AdaGrad-Fobos [16], Adam [18] , and Adadelta [4]. PDA uses (2.6)

with Ct (3.9) and The other algorithms use logistic loss

ϕt(w) = yt log
(

1 + e−ŷt

)

+ (1 − yt) log

(

1 + e−ŷt

e−ŷt

)

(4.1)

and ψt(w) := λ ||w||I,1 for all algorithms. We split the dataset into validation dataset

(30%) and training dataset (70%) and evaluate the algorithms by error rate, which

is the misclassification ratio for the validation set. Also we show the sparsity,

proportion of zero components, of the estimated coefficient. In both experiments,

the error rate and sparsity is averaged over 300 independent trials. In each trial, the

training dataset is shuffled randomly. We employ one-vs-all method to train multi-

class classifier. The parameters for each algorithm are chosen so that the speeds

of initial convergence of error rate are nearly the same, and are shown in Table 4.1

and 4.2 for handwritten digit classification and text classification. In classification

experiments, we use r = 1 and Qt = I.

4.1.1 Handwritten Digit Classification

MNIST is handwritten digit dataset by [49]. We have 28 × 28 pixel data with gray

scale value normalized in range of [0, 1] and each data is labeled by a digit from 0 to

15
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Table 4.1: Handwritten digit classification: parameters.

Algorithms λ η

AdaDelta - -

AdaGrad-Fobos 5 × 10−3 0.1

AdaGrad-RDA 10−4 3.4

Adam - 5 × 10−5

RDA 5 × 10−4 1.5

PDA 10−4 0.15

Table 4.2: Text classification: parameters.

Algorithms λ η

AdaDelta 0.1 10−5

AdaGrad-Fobos 4 × 10−6 0.1

AdaGrad-RDA 10−7 0.1

Adam 0.1 0.1

RDA 10−8 1.4

PDA 0.05 0.3

9. The purpose is to learn a linear classifier, which can recognize the number from

the handwritten image. Figure 4.1a shows the learning curve of error rate for each

algorithm and you can see that PDA, the proposed algorithm, achieves the lowest

validation error for almost entire iteration. Although Adam also achieves much

lower error than other algorithms except PDA, the sparsity of Adam is 9.2%, while

PDA is 29.9% (sparsities for compared algorithms are shown by Figure 4.1b). To

see the effect of the sparsity, we visualize the normalized magnitude of the esti-

mated coefficient by PDA and Adam by Figure 4.2. The coefficient estimated by

Adam is seemed vaguer than that by PDA, and it can be said that the coefficient by

PDA focuses on wholes and edges of digits more than Adam. Also there are con-

trasts among the elements of coefficient. By those features, assumed to be achieved

by PDA’s effectiveness of regularization, PDA can learn more accurate classifier,

which can improve the error rate, than existing algorithms.

4.1.2 Text Classification

RCV is text dataset by [50] based on news data with its category label. Each

data has bag of words represented text data with four label (Economics, Industrial,

Social, and Markets) and multiple labels could be attached. The purpose is to learn

a linear classifier to estimate which category the given news text belongs to by the

feature of bag-of-words representation, where the frequency of occurrence of each

word is used as a feature vector. Figure 4.3a shows the learning curve of error rate

for each algorithm and you can see that PDA achieves the lowest validation error.
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Table 4.3: sparse system identification: parameters.

Algorithms λ η α r

PAPA - 0.14 0.8 1

APFBS 10−6 0.14 0.8 1

RDA 10−3 0.01 - -

AdaGrad 10−3 0.17 - -

PDA 3 0.13 0.8 1

Sparsity for each algorithm is shown by Figure 4.3b and sparsity for each algorithm

at the end of the iteration is RDA (14.2%), AdaGrad-RDA (19.7%), AdaGrad-

Fobos (0.4%), AdaDelta (0.3%), Adam (0.3%), and PDA (35.9%). So, as is the

case of MNIST classification, PDA achieves the sparsest solution and this seems

to contribute the high performance of PDA, since bag-of-words representation can

be very sparse since the size of coefficient is the number of vocabulary in all text

data, and each text data contains a few of the vocabulary. We can say that PDA

successfully extract the sparse structure of the text dataset and utilize it to gain the

accuracy in this text classification setting

4.2 Regression

We compare the proposed algorithm with PAPA [39, 40], APFBS [25, 44], RDA

[27], and AdaGrad-RDA [16]. The RDA, AdaGrad-RDA algorithms use ϕLS
t (w)

and ψt(w) := λ ||w||I,1. The other algorithms use ϕt(w) in (2.6) and the weighted

ℓ1 norm in (3.6). We use the system mismatch ||w∗ − wt||2I/||w∗||2I as a performance

measure for all regression experiments except nonlinear model estimation, which is

evaluated by mean squared error (MSE). Although there are some possible choice

for Qt such as in [19, 20, 38, 45], the metric in (3.5) are used for PAPA, APFBS,

and PDA for fairness. In both experiments, the system mismatch (MSE for non-

linear model estimation) is averaged over 300 independent trials. The parameters

for each algorithm are chosen so that the speeds of initial convergence of system

mismatch are nearly the same, and are shown in Table 4.3 and 4.4 for sparse system

identification and echo cancellation problem.

4.2.1 Sparse System Identification

We let the proportion of the zero components of the true coefficient vector w∗ ∈
R

1000 be 80%, and the nonzero components are selected randomly from [−4, 4].

The noise νt is zero-mean i.i.d. Gaussian with variance 0.01. The input vector

xt ∈ R1000 is randomly drawn from the i.i.d. uniform distribution over [−2, 2].

Figure 4.4a depicts the learning curves. One can see that the almost entire per-

formance of PDA outperforms the other algorithms. The proportion of the zero

components of the estimated coefficient vector is given as follows: PAPA (0%),

APFBS (0%), RDA (11.6%), AdaGrad-RDA (89%), and PDA (90%). PDA and
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Table 4.4: Echo cancellation: parameters.

Algorithms λ η α r

PAPA - 0.3 0.2 2

APFBS 10−3 0.2 0.3 2

RDA 10−4 1 - -

AdaGrad 10−4 0.3 - -

PDA 0.026 0.2 0.3 2

AdaGrad-RDA estimates the zero components accurately (see Section 3.6). Fig-

ure 4.4b depicts the sparsity. One can see that PDA achieves an accurate sparsity-

level remarkably faster than the other algorithms.

4.2.2 Echo Cancellation

Figure 4.5 shows the amplitude of speech signal and the echo path used in the ex-

periments. The sampling frequency of speech signal and echo path is 8000 Hz.

The learning is stopped whenever the amplitude of input signal is below 10−4. The

noise is zero-mean i.i.d. Gaussian with the signal noise ratio (SNR) 20 dB. Fig-

ure 4.6a shows the learning curves. Figure 4.6b shows the proportion of the zero

components of the estimated coefficient vector, which is given as follows: PAPA

(0%), APFBS (4.1%), RDA (51.4%), AdaGrad-RDA (90.0%), and PDA (64.8%).

Note here that the regularization parameter for each algorithm is chosen to give

the best convergence behaviors. In this experiment, even though the echo path has

not any zero components, there are several large scale components, which are im-

portant to estimate. PDA estimates those large important elements by reducing the

estimation variance by its regularization capability, and yields the best estimation

with the best convergence behavior. Also the use of the metric Qt allows PAPA,

APFBS, and PDA to attain fast initial convergence. In addition, PDA achieves the

lowest system mismatch due to the strong regularization.

4.2.3 Nonlinear model estimation

Finally, we apply PDA to multikernel adaptive filtering [51, 52], which aims to es-

timate nonlinear system. Figure 4.7a shows the nonlinear system, what we want to

estimate in this experiment. To see derivations of the PDA algorithm for multiker-

nel, we need to step into the multikernel adaptive filtering theory [51]. However,

the theory of multikernel is out of scope of this paper, so we place more detail

about the algorithm’s derivation and experiments setting in Appendix A.3.

Figure 4.7b shows the learning curve, where we compare APFBS application

for multikernel adaptive filtering [53] with PDA application. One can see that the

entire performance is better than APFBS. In terms of sparsity, Figure 4.7c depicts

the dictionary size, which is the number of functions used for the estimation, and

PDA uses less dictionary functions than APFBS. So, it can be said that PDA is less
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redundant than APFBS and it increases MSE.
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Figure 4.1: Handwritten digit classification.
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Chapter 5

Conclusion

We presented the projection-based regularized dual averaging (PDA), which fea-

tures the input-vector normalization that came from the squared-distance function

to a closed convex set, the sparsity-seeking variable-metric, and a constant step

size without any undesirable biases for regularization. Also a weighted ℓ1 regu-

larization was proposed to offset the bias, due to the sparsity-promoting metric.

variable-metric. Although the squared-distance function has been used in many

adaptive filtering algorithms including NLMS, APA, APSM, and APFBS, its ap-

plication to the dual averaging method has not been studied previously to the best of

authors’ knowledge. An application of PDA to an online classification and regres-

sion problem was presented. The numerical examples, including regression and

classification with synthetic/real data demonstrated that PDA performed the best

with better sparsity-seeking property compared to the existing methods including

AdaGrad and APFBS.

27
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Appendix

A.1 Regret Analysis

In this section, we investigate the regret bound (A.1) of PDA in the case of that Qt =

I, which reduces the regularizer ψt, defined by (3.6), to time invariant regularizer

ψ. We denote by (wτ)τ=0,··· ,t the sequence of the estimation, by (gτ)τ=1,··· ,t the

sequence of the gradient, and by (sτ)τ=1,··· ,t the sequence of the sum of gradient,

generated by (3.4). In stochastic regularized optimization, the regret with respect

to any fixed w ∈ Rn is

Rt(w) :=

t∑

τ=1

[

ϕτ(wτ−1) + ψ(wτ−1) − (ϕτ(w) + ψ(w))
]

. (A.1)

At first, we define the set for a constant D > 0,

FD :=





w ∈ Rn

∣
∣
∣
∣
∣
∣
∣

||w||2I
2
≤ D2





, (A.2)

and following two type of conjugate functions:

U(s) : = max
w∈FD

{〈s,w〉I − ψ(w)} (A.3)

V(s) : = max
w

{

〈s,w〉I − ψ(w) − 1

2η
||w||2I

}

(A.4)

Then, we prove two lemmas in order to see the upper bound of the regret.

Lemma 1. For any s ∈ Rn, we have

U(s) ≤ V(s) +
D2

η
. (A.5)

28
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Proof: It can be derived the definition of U(s) and V(s) as,

U(s) = max
w∈FD

{〈s,w〉I − ψ(w)}

≤ max
w





〈s,w〉I − ψ(w) +

D2 − ||w||2I /2
η






= V(s) +
D2

η
.

�

Lemma 2. For any s, g ∈ Rn,

1. The function V(s) is convex and differentiable.

2. The gradient of V(s) is given by

∇V(s) = π(s) (A.6)

where

π(s) : = arg max
w

{

〈s,w〉I − ψ(w) − 1

2η
||w||2I

}

= arg min
w

{

〈−s,w〉I + ψ(w) +
1

2η
||w||2I

}

. (A.7)

3. The gradient ∇V(s) is Lipschitz continuous with η:

||∇V(s1) − ∇V(s2)||2I ≤ η ||s1 − s2||2I (A.8)

and

V(s + g) ≤ V(s) + 〈g,∇V(s)〉I +
η

2
||g||2I . (A.9)

Proof: The function ψ(w)+ 1
2η
||w||2I is 1

η
−strongly convex function, so we can apply

theorem 1 in [54] to V(s) to derive the results. �

Theorem 1. If there exist G > 0 and L > 0 such that ||gt ||2I ≤ G and ψ(wt) ≤ L for

any t,

Rt(w) ≤ ηt(G + L)

2
+

D2

η
, ∀w ∈ FD. (A.10)
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Proof: By the assumption w ∈ FD, the regret can be rewritten as,

Rt(w) =

t∑

τ=1

[
ϕτ(wτ−1) + ψ(wτ−1) − (ϕτ(w) + ψ(w))

]

≤
t∑

τ=1

[〈gτ,wτ−1 − w〉I + ψ(wτ−1)
] − tψ(w)

≤
t∑

τ=1

[〈gτ,wτ−1 − w〉I + ψ(wτ−1)
] − ψ(w)

≤ max
w∈FD










t∑

τ=1

〈gτ,wτ−1 − w〉I + ψ(wτ−1)




− ψ(w)






=

t∑

τ=1

(〈gτ,wτ−1〉I + ψ(wτ−1)
)
+ max

w∈FD

{〈st,−w〉I − ψ(w)}

=: δt. (A.11)

The first inequality uses ϕτ(wτ) − ϕτ(w) ≤ 〈gτ,wτ − w〉. By lemma 1, the upper

bound (A.11) can be bounded by

δt =

t∑

τ=1

(〈gτ,wτ−1〉I + ψ(wτ−1)
)

+ U(−st)

≤
t∑

τ=1

(〈gτ,wτ−1〉I + ψ(wτ−1)
)
+ V(−st) +

D2

η
. (A.12)

By lemma 2,

V(−st) = V(−st−1 − gt)

≤ V(−st−1) − 〈gt,∇V(−st−1)〉I +
η

2
||gt ||2I

≤ V(−st−1) − 〈gt, π(−st−1)〉I +
η

2
||gt ||2I . (A.13)

Since π(−st) corresponds to the update of PDA (3.4),

V(−st) ≤ V(−st−1) − 〈gt,wt−1〉I +
η

2
||gt ||2I , (A.14)

so

V(−st) − V(−st−1) ≤ − 〈gt,wt−1〉I +
η

2
||gt ||2I . (A.15)

By summing (A.15) for t = 1, 2, · · · , t, and noting that s0 := 0, we arrive at

V(−st) ≤
t∑

τ=1

[

− 〈gτ,wτ−1〉I +
η

2
||gτ||2I

]

. (A.16)
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Figure A.1: Illustrations of forward-backward splitting and RDA.

Finally, by (A.11) and (A.12), we attain,

Rt(w) ≤ δt ≤ tL +
ηtG

2
+

D2

η
. (A.17)

�

From theorem 1, we can conclude that the regret of (wτ)τ=0,1,··· ,t is bounded by

tL + ηtG/2 + D2/η for all w ∈ FD under the assumptions of theorem 1 (the upper

bound of the regret for RDA with same setting is ηtG/2 + D2/η).

A.2 Forward Backward Splitting

To solve (2.1) in the case of ψt = 0, we can use SGD to update the previous estimate

wt−1 ∈ Rn by

wt : = wt−1 − ηt gt, gt ∈ ∇ϕt(wt−1) (A.18)

where (ητ)τ=1,2,··· ,t is the step size sequence.

Then, for ψt , 0, one can apply

wt := prox
It

ηtψt
(wt−1 − ηt gt) , (A.19)
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where I is the n × n identity matrix, and the proximity operator is defined, for

w ∈ Rn, as [55, 56]

prox
Qt

ηψt
(w) := arg min

z∈Rn

(

ηψt(w) +
1

2
||w − z||2Qt

)

. (A.20)

This type of algorithm is called forward-backward splitting [57].

A.2.1 Difference Between Forward Backward Splitting and RDA

Figure A.1 shows the difference between the forward-backward splitting and RDA.

One can see that the effects of the proximity operator accumulate over the iteration.

This actually increases the estimation biases, and APFBS therefore has a tradeoff

between the strength of regularization and the estimation accuracy. RDA is free

from the accumulation issue, yielding high estimation accuracy together with a

high level of sparsity.

A.3 Application for Multikernel Adaptive Filter

Here we introduce multikernel adaptive filtering [51, 52] and PDA application. In

multikernel adaptive filtering, we want to estimate a nonlinear function such as

y = f (x), y ∈ R, x ∈ Rn (A.21)

by multikernel modeling defined as

ft(x) :=
∑

m∈M

∑

j∈Jt

h
(m)

j,t
km(x, x j)

︸               ︷︷               ︸

mth model

, h
(m)

j,t
∈ R (A.22)

where km : Rn × Rn → R, m ∈ M := {1, 2, · · · , M} is the set of positive definite

kernels to be used and {km(·, x j)}m∈M, j∈Jt
is the dictionary indicated by the dic-

tionary index set Jt := { j(t)
1
, j

(t)

2
, , · · · , , j

(t)
rt
} ⊂ {1, 2, · · · , t} where rt is the size of

the dictionary index set Jt. Figure 4.7c shows rt through the iteration. The model

(A.22) can be rewritten as

ft(xt) = 〈Ht, Kt〉 (A.23)

where 〈A, B〉 := tr(ATB), the norm is ||A|| :=
√
〈A, A〉 for any same sized matrix

A, B and

Ht : =
[

h jt
1
,t, h jt

2
,t, · · · , h jtrt

,t

]

∈ RM×rt ,

h j,t : =
[

h
(1)
j,t
, h

(2)
j,t
, , · · · , , h(M)

j,t

]

∈ RM,

Kt : =
[

k jt
1
,t, k jt

2
,t, · · · , k jtrt

,t

]

∈ RM×rt ,

k j,t :=
[

k1(xt, x j), k2(xt, x j), · · · , kM(xt, x j)
]

∈ RM.
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As loss function, we use

lt(H) : = ϕt(H) + ψt(H), (A.24)

ϕt(H) : =
1

2
d2(H,Ct), ψt(H) = λ

∑

j∈Jt

∣
∣
∣

∣
∣
∣h j

∣
∣
∣

∣
∣
∣ (A.25)

where

d(H,Ct) : = min
Y∈Ct

||H − Y|| , (A.26)

Ct : = {H ∈ RM×rt : 〈H, Kt〉 = yt}. (A.27)

The projection onto (A.27) is given by

∇ϕt(H) = H − PCt
(H), (A.28)

PCt
(H) : = arg min

Y∈Ct

||H − Y||2

= H − 〈H, Kt〉 − yt

||Kt||2
Kt. (A.29)

We compare PDA with APFBS, that has been applied to multikernel adaptive

filtering by [53]:

Ĥt = Ht−1 − η∇ϕt(Ht−1), (A.30)

Ht = proxηψt

(

Ĥt

)

=
∑

j∈Jt

max





1 − λη

∣
∣
∣

∣
∣
∣ĥ j,t

∣
∣
∣

∣
∣
∣

, 0





ĥ j,te

T

j,rn
, (A.31)

where e j,rn
is a length-rn unit vector that has one at the jth entry and zeros else-

where. PDA algorithm for multikernel adaptive filtering can be derived as

Ĥt = −η
t∑

τ=1

∇ϕτ(Hτ−1), (A.32)

Ht = proxηψt

(

Ĥt

)

. (A.33)

In addition, following [53], we use dictionary update such as

Dictionary update

Iteration : for time instance t

1. Update dictionary Jt := Jt−1 ∪ {t}
2. Update coefficient Ht−1 to Ht

by APFBS (A.31) or PDA (A.33)

3. [If rt ≥ rmax] Refine dictionary

Jt := { j ∈ Jt :
∣
∣
∣

∣
∣
∣h j,t

∣
∣
∣

∣
∣
∣ ≥ ǫJ }, ǫJ > 0
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Table A.1: Nonlinear model selection: parameters.

Algorithms η λ ǫJ rmax

APFBS 0.3 10−8 10−12 20

PDA 0.3 10−6 10−12 20

As experiment setting, following [58], we use the normalized gaussian kernel,

km(d, u) :=
1

√
2πσm

exp

(

−||d − u||2
2σm

)

, d, u ∈ Rn (A.34)

whereσm is the variance, which set to a×10b, a ∈ {1, 2, , · · · , , 10}, b ∈ {−4,−3, , · · · , , 1}.
Other parameters are summarized in Table A.1. As true function f , with input

xt ∈ R, outputs yt ∈ R, and white noise ut ∼ N(0, 0.01), we use

yt := exp
(

−20(xt − 0.1)2
)

− 2 exp
(

−20(xt − 0.8)2
)

+ ut (A.35)

where xt ∼ U[0, 1]. The system (A.35) is used in [53] and is visualized by Figure

4.7a.
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