
A Practical Toolkit for Multilingual Question and Answer Generation

Asahi Ushio and Fernando Alva-Manchego and Jose Camacho-Collados
Cardiff NLP, School of Computer Science and Informatics, Cardiff University, UK

{UshioA,AlvaManchegoF,CamachoColladosJ}@cardiff.ac.uk

Abstract
Generating questions along with associated an-
swers from a text has applications in several
domains, such as creating reading comprehen-
sion tests for students, or improving document
search by providing auxiliary questions and
answers based on the query. Training models
for question and answer generation (QAG) is
not straightforward due to the expected struc-
tured output (i.e. a list of question and answer
pairs), as it requires more than generating a sin-
gle sentence. This results in a small number
of publicly accessible QAG models. In this pa-
per, we introduce AutoQG, an online service
for multilingual QAG along with lmqg, an all-
in-one python package for model fine-tuning,
generation, and evaluation. We also release
QAG models in eight languages fine-tuned on
a few variants of pre-trained encoder-decoder
language models, which can be used online via
AutoQG or locally via lmqg. With these re-
sources, practitioners of any level can benefit
from a toolkit that includes a web interface for
end users, and easy-to-use code for develop-
ers who require custom models or fine-grained
controls for generation.

1 Introduction

Question and answer generation (QAG) is a text
generation task seeking to output a list of question-
answer pairs based on a given paragraph or sen-
tence (i.e. the context). It has been used in many
NLP applications, including unsupervised question
answering modeling (Lewis et al., 2019; Zhang
and Bansal, 2019; Puri et al., 2020), fact-checking
(Ousidhoum et al., 2022), semantic role labeling
(Pyatkin et al., 2021), and as an educational tool
(Heilman and Smith, 2010; Lindberg et al., 2013).
The most analysed setting in the literature, how-
ever, has been question generation (QG) with pre-
defined answers, as this simplifies the task and
makes the evaluation more straightforward.

Despite its versatility, QAG remains a challeng-
ing task due to the difficulty of generating compo-

Figure 1: An example of question and answer generation
given a paragraph as context.

sitional outputs containing a list of question and
answer pairs as shown in Figure 1, with recent
works mainly relying on extended pipelines with
multiple models in an ad-hoc manner (Lewis et al.,
2021; Bartolo et al., 2021). Such works usually
integrate QAG into their in-house software, pre-
venting models to be publicly released, and their
complex pipelines make them tough to reproduce.

In this paper, we introduce an open set of soft-
ware tools and resources to assist on the develop-
ment and employment of QAG models for different
types of users. We publicly release:1

• lmqg,2 a python package for QAG model fine-
tuning and inference on encoder-decoder lan-
guage models (LMs), as well as evaluation
scripts, and a deployment API hosting QAG
models for developers;

• Release of 16 models for English, and three di-
verse models for each of the seven languages
integrated into our library, all fine-tuned on
QG-Bench (Ushio et al., 2022) and available

1All the resources except for the datasets are released under
an open MIT license, while the datasets follow the license of
their original release.

2https://pypi.org/project/lmqg

https://pypi.org/project/lmqg

on the HuggingFace hub (Wolf et al., 2020);3

• AutoQG (https://autoqg.net), a website
where developers and end users can interact
with our multilingual QAG models.

2 Resources: Models and Datasets

Our QAG toolkit makes use of pre-existing mod-
els and datasets, fully compatible with the Hug-
gingFace hub. This makes our library easily ex-
tendable in the future as newer datasets and better
models emerge. In this section, we describe the
datasets (§ 2.1) and models (§ 2.2) currently avail-
able through lmqg and AutoQG.

2.1 Multilingual Datasets

Our toolkit integrates all QG datasets available in
QG-Bench (Ushio et al., 2022). QG-Bench is a
multilingual QG benchmark consisting of a suite
of QG datasets in different languages. In particu-
lar, we integrate the following datasets: SQuAD
(English), SQuADShifts (Miller et al., 2020) (En-
glish), SubjQA (Bjerva et al., 2020) (English),
JAQuAD (So et al., 2022) (Japanese), GerQuAD
(Möller et al., 2021) (German), SberQuAd (Efi-
mov et al., 2020) (Russian), KorQuAD (Lim et al.,
2019) (Korean), FQuAD (d’Hoffschmidt et al.,
2020) (French), Spanish SQuAD (Casimiro Pio
et al., 2019) (Spanish), and Italian SQuAD (Croce
et al., 2018) (Italian). QG-Bench is available in our
official HuggingFace Hub.4

2.2 Models

Aiming to make QAG models publicly accessible
in several languages, we used lmqg to fine-tune
LMs using QG-Bench (§ 2.1). For this first release,
we defined a pipeline QAG model architecture con-
sisting of two independent models: one for answer
extraction (AE) and one for question generation
(QG). During training, the AE model learns to find
an answer in each sentence of a given paragraph,
while the QG model learns to generate a question
given an answer from a paragraph. To generate
question-answer pairs at generation time, the AE
model first extracts answers from all the sentences
in a given paragraph, and then these are used by the
QG model to generate a question for each answer.
We also implemented other types of QAG such as
multitask QAG and end2end QAG (Ushio et al.,

3https://huggingface.co/lmqg
4https://huggingface.co/lmqg

2023), which is available via lmqg library as well
as AutoQG (§ 5).

As pre-trained LMs, we integrated T5 (Raffel
et al., 2020), Flan-T5 (Chung et al., 2022), and
BART (Lewis et al., 2020) for English; and mT5
(Xue et al., 2021) and mBART (Liu et al., 2020) for
non-English QAG models. The pre-trained weights
were taken from checkpoints available in the Hug-
gingFace Hub as below:

• t5-{small,base,large}

• google/flan-t5-{small,base,large}

• facebook/bart-{base,large}

• google/mt5-{small,base}

• facebook/mbart-large-cc25

All the fine-tuned QAG models are publicly
available in our official HuggingFace Hub. While
we initially integrated these models, users can eas-
ily fine-tune others using lmqg, as we show in § 3.

3 lmqg: An All-in-one QAG Toolkit

In this section, we introduce lmqg (Language
Model for Question Generation), a python library
for fine-tuning LMs on QAG (§ 3.1), generating
question-answer pairs (§ 3.2), and evaluating QAG
models (§ 3.3). Additionally, with lmqg, we build
a REST API to host QAG models to generate ques-
tion and answer interactively (§ 5). lmqg is inter-
operable with the HuggingFace ecosystem, as it
can directly make use of the datasets and models
already shared on the HuggingFace Hub.

3.1 QAG Model Fine-tuning
Fine-tuning is performed via GridSearcher, a
class to run encoder-deocoder LM fine-tuning with
hyper-parameter optimization (see Appendix A for
more details). For example, the following code
shows how we can fine-tune T5 (Raffel et al., 2020)
on SQuAD (Rajpurkar et al., 2016), with the QAG
model explained in § 2.2. Since we decomposed
QAG into AE and QG, two models need to be fine-
tuned independently.

from lmqg import GridSearcher

instantiate AE trainer
trainer_ae = GridSearcher(

dataset_path="lmqg/qg_squad",
input_types="paragraph_sentence",
output_types="answer",
model="t5-large")

train AE model

https://autoqg.net
https://huggingface.co/lmqg
https://huggingface.co/lmqg

trainer_ae.train()

instantiate QG trainer
trainer_qg = GridSearcher(

dataset_path="lmqg/qg_squad",
input_types="paragraph_answer",
output_types="question",
model="t5-large")

train QG model
trainer_qg.train()

The corresponding dataset, lmqg/qg_squad,5

has as columns: paragraph_answer (answer-
highlighted paragraph), paragraph_sentence
(sentence-highlighted paragraph), question (tar-
get question), and answer (target answer). The
input and the output to the QG model are
paragraph_answer and question, while those
to the AE model are paragraph_sentence and
answer. The inputs and the outputs can be spec-
ified by passing the name of each column in
the dataset to the arguments, input_types and
output_types when instantiating GridSearcher.

3.2 QAG Model Generation

In order to generate question-answer pairs from
a fine-tuned QAG model, lmqg provides the
TransformersQG class. It takes as input a path to
a local model checkpoint or a model name on the
HuggingFace Hub in order to generate predictions
in a single line of code. The following code snippet
shows how to generate a list of question and answer
pairs with the fine-tuned QAG model presented in
§ 2.2. TransformersQG decides which model to
use for each of AE and QG based on the arguments
model_ae and model.

from lmqg import TransformersQG

instantiate model
model = TransformersQG(

model="lmqg/t5-base -squad -qg",
model_ae="lmqg/t5-base -squad -ae"

)

input paragraph
x = """ William Turner was an English
painter who specialised in watercolour
landscapes. One of his best known
pictures is a view of the city of
Oxford from Hinksey Hill."""

generation
model.generate_qa(x)
[
(
"Who was an English painter
specialised in watercolour

5https://huggingface.co/datasets/lmqg/qg_squad

landscapes?",
"William Turner"

),
(
"Where is William Turner ’s
view of Oxford?",

"Hinksey Hill."
)

]

3.3 QAG Model Evaluation
Similar to other text-to-text generation tasks,
we implement an evaluation mechanism that
compares the set of generated question-answer
pairs Q̃p = {(q̃1, ã1), (q̃2, ã2), . . . } to a refer-
ence set of gold question-answer pairs Qp =
{(q1, a1), (q2, a2), . . . } given an input paragraph
p. Let us define a function to evaluate a single
question-answer pair to its reference pair as

dq,a,q̃,ã = s
(
t(q, a), t(q̃, ã)

)
(1)

t(q, a) = “question:{q}, answer:{a}’’ (2)

where s is a reference-based metric, and we com-
pute the F1 score as the final metric as below:

F1 = 2
R · P
R+ P

(3)

R = mean
([

max
(q,a)∈Qc

(
dq,a,q̃,ã

)]
(q̃,ã)∈Q̃c

)
(4)

P = mean
([

max
(q̃,ã)∈Q̃c

(
dq,a,q̃,ã

)]
(q,a)∈Qc

)
(5)

Conceptually, the recall (4) and precision (5)
computations attempt to “align” each generated
question-answer pair to its “most relevant” refer-
ence pair. Thus, we refer to the score in (3) as the
QAAligned score. The quality of the alignment
directly depends on the underlying metric s. Fur-
thermore, the complexity of QAAligned is no more
than the complexity of the underlying metric, and
invariant to the order of generated pairs because of
the alignment at computing recall and precision.

Out-of-the-box, lmqg implements two variants
based on the choice of base_metric s (used
for evaluation in § 4): QAAligned BS using
BERTScore (Zhang et al., 2019) and QAAligned
MS using MoverScore (Zhao et al., 2019). We se-
lected these two metrics as they correlate well with
human judgements in QG (Ushio et al., 2022). Nev-
ertheless, the choice of base_metric is flexible
and users can employ other natural language gen-
eration (NLG) evaluation metrics such as BLEU4
(Papineni et al., 2002), METEOR (Denkowski and
Lavie, 2014), or ROUGEL (Lin, 2004).

https://huggingface.co/datasets/lmqg/qg_squad

With lmqg, QAAligned score can be computed
with the QAAlignedF1Score class as shown in the
code snippet below:

from lmqg import QAAlignedF1Score

gold reference and generation
ref = [
"question: What makes X?, answer: Y",
"question: Who made X?, answer: Y"]
pred = [
"question: What makes X?, answer: Y",
"question: Who build X?, answer: Y",
"question: When X occurs?, answer: Y"]

compute QAAligned BS
scorer = QAAlignedF1Score(

base_metric="bertscore")
scorer.get_score(pred , ref)

compute QAAligned MS
scorer = QAAlignedF1Score(

base_metric="moverscore"
)
scorer.get_score(pred , ref)

4 Evaluation

We rely on the QAG models and datasets included
in the library (see § 2). The individual QG com-
ponents of each model (i.e. the generation of a
question given an answer in a paragraph) were ex-
tensively evaluated in Ushio et al. (2022). For this
evaluation, therefore, we focus on the quality of the
predicted questions and answers given a paragraph
(i.e. the specific answer is not pre-defined). For
each model, we fine-tune, make predictions and
compute their QAAligned scores via lmqg.

4.1 Results

Monolingual evaluation (English). Table 1
presents the test results on SQuAD for seven En-
glish models based on BART, T5 and Flan-T5. The
QAG model based on BARTLARGE proves to be
the best aligned with gold reference question and
answers among most of the metrics. As with other
QG experiments and NLP in general, the larger
models prove more reliable.

Multilingual evaluation. Table 2 shows the test
results of three multilingual models (mBART,
mT5SMALL and mT5BASE) in seven languages other
than English, using their corresponding language-
specific SQuAD-like datasets in QG-Bench for fine-
tuning and evaluation.6 In this evaluation, no single

6The result of mBART in German is zero. Upon further
inspection, we found that the fine-tuned answer extraction
module did not learn properly, probably due to the limited

Model QAAligned BS QAAligned MS

BARTBASE 92.8 / 93.0 / 92.8 64.2 / 64.1 / 64.5
BARTLARGE 93.2 / 93.4 / 93.1 64.8 / 64.6 / 65.0
T5SMALL 92.3 / 92.5 / 92.1 63.8 / 63.8 / 63.9
T5BASE 92.8 / 92.9 / 92.6 64.4 / 64.4 / 64.5
T5LARGE 93.0 / 93.1 / 92.8 64.7 / 64.7 / 64.9

Flan-T5SMALL 92.3 / 92.1 / 92.5 63.8 / 63.8 / 63.8
Flan-T5BASE 92.6 / 92.5 / 92.8 64.3 / 64.4 / 64.3
Flan-T5LARGE 92.7 / 92.6 / 92.9 64.6 / 64.7 / 64.5

Table 1: QAAligned scores (F1/P /R) on the test set of
SQuAD dataset by different QAG models, where the
best score in each metric is shown in boldface.

Language QAAligned BS QAAligned MS

m
T

5 S
M

A
L

L

German 81.2 / 80.0 / 82.5 54.3 / 54.0 / 54.6
Spanish 79.9 / 77.5 / 82.6 54.8 / 53.3 / 56.5
French 79.7 / 77.6 / 82.1 53.9 / 52.7 / 55.3
Italian 81.6 / 81.0 / 82.3 55.9 / 55.6 / 56.1
Japanese 79.8 / 76.8 / 83.1 55.9 / 53.8 / 58.2
Korean 80.5 / 77.6 / 83.8 83.0 / 79.4 / 87.0
Russian 77.0 / 73.4 / 81.1 55.5 / 53.2 / 58.3

m
T

5 B
A

SE
German 76.9 / 76.3 / 77.6 53.0 / 52.9 / 53.1
Spanish 80.8 / 78.5 / 83.3 55.3 / 53.7 / 57.0
French 68.6 / 67.6 / 69.7 47.9 / 47.4 / 48.4
Italian 81.7 / 81.3 / 82.2 55.8 / 55.7 / 56.0
Japanese 80.3 / 77.1 / 83.9 56.4 / 54.0 / 59.1
Korean 77.3 / 76.4 / 78.3 77.5 / 76.3 / 79.0
Russian 77.0 / 73.4 / 81.2 55.6 / 53.3 / 58.4

m
B

A
R

T

German 0 / 0 / 0 0 / 0 / 0
Spanish 79.3 / 76.8 / 82.0 54.7 / 53.2 / 56.4
French 75.6 / 74.0 / 77.2 51.8 / 51.0 / 52.5
Italian 40.1 / 40.4 / 39.9 27.8 / 28.1 / 27.5
Japanese 76.7 / 74.8 / 78.9 53.6 / 52.3 / 55.1
Korean 80.6 / 77.7 / 84.0 82.7 / 79.0 / 87.0
Russian 79.1 / 75.9 / 82.9 56.3 / 54.0 / 58.9

Table 2: QAAligned scores (F1/P /R) on the test set of
QG-Bench by different QAG models, where the best
score in each language is shown in boldface.

LM produces the best results across the board, yet
QAG models based on mT5SMALL and mT5BASE
are generally better than those based on mBART.

4.2 Number of Generated Questions and
Answers

Table 3 and Table 4 show the averaged number of
generated question-answer pairs and compare it to
the number in the gold dataset. For English, there
is a small difference across all QAG models, with
all generating fewer pairs than the gold dataset,
but with a limited margin. For other languages,
however, there are clear differences across QAG
models, with the numbers of question-answer pairs
generated by the QAG models always being larger

size of the German dataset. T5 models, however, proved more
reliable in this case.

Gold BARTB BARTL T5S T5B T5L Flan-T5S Flan-T5B

4.9 4.1 4.2 4.2 4.3 4.3 4.2 4.3

Table 3: Average number of generated question and
answer pairs per paragraph on the test set of SQuAD by
different QAG models.

Language Gold mT5SMALL mT5BASE mBART

German 4.6 10.1 8.4 0.0
Spanish 1.3 4.6 4.8 4.7
French 1.3 4.9 3.6 5.4
Italian 3.8 4.7 4.6 2.5
Japanese 1.3 6.6 6.8 3.6
Korean 1.3 6.7 6.3 6.7
Russian 1.3 4.8 4.9 4.7

Table 4: The averaged number of generated question
and answer pairs per paragraph on the test set of QG-
Bench for each language.

than those in the gold dataset. When comparing
the number of pairs generated by the QAG models
with their QAAligned scores, in languages such as
German, Spanish, and Korean, QAG models that
generated a larger number question-answer pairs
achieved higher scores, not only recall-wise but
also generally for F1.

5 AutoQG

Finally, we present AutoQG (https://autoqg.net),
an online QAG demo where users can gener-
ate question-answer pairs for texts in eight lan-
guages (English, German, Spanish, French, Italian,
Japanese, Korean, Russian) by simply providing a
context document. We deploy the QAG models de-
scribed in § 2. In addition to the features described
above, the online demo shows perplexity computed
via lmppl,7 a python library to compute perplexity
given any LM architecture. This feature helps us
provide a ranked list of generation to the user. Al-
though we can compute perplexity for non-English
generations based on the QAG models in each lan-
guage, it entails large memory requirements on the
the hosting server. As such, we compute a lexical
overlap between the question and the document as
a computationally-light alternative to the perplexity,
which is defined as:

1− |q ∩ p|
|q|

(6)

where | · | is the number of characters in a string,
and q ∩ p is the longest sub-string of the question
q matched to the paragraph p.

7https://pypi.org/project/lmppl

Figure 2: A screenshot of AutoQG with an example of
question and answer generation over a paragraph.

Figure 3: A screenshot of AutoQG with an example
of question and answer generation over a paragraph in
Japanese.

Figure 2 and Figure 3 show examples of the
interface with English and Japanese QAG, where
there is a tab to select QAG models, language, and
parameters at generation including the beam size
and the value for nucleus sampling (Holtzman et al.,
2020). Optionally, users can specify an answer
and generate a single question on it with the QG
model, as shown in Figure 4. A short introduction
video to AutoQG is available at https://youtu.be/

https://autoqg.net
https://pypi.org/project/lmppl
https://youtu.be/T6G-D9JtYyc

Figure 4: A screenshot of AutoQG when an answer is
specified by the user.

T6G-D9JtYyc.

6 Conclusion

In this paper, we introduced lmqg, a python pack-
age to fine-tune, evaluate and deploy QAG models
with a few lines of code. The library implements
the QAG task as an efficient integration of answer
extraction and question generation, and includes
automatic reference-based metrics for model eval-
uation. Finally, we showcase AutoQG, an online
demo where end users can benefit from QAG mod-
els without any programming knowledge. AutoQG
enables the selection of features going from differ-
ent models and languages to controlling the diver-
sity of the generation.

Limitations

The focus on this paper was introducing software to
make QAG models available to as many practition-
ers as possible, but there are a couple of limitations
in the models and evaluation metrics we proposed.

First, our released QAG models assume a para-
graph up to around 500 tokens as an input, and
longer documents can not be directly fed into the
models. Additionally, the released QAG models
were fine-tuned on questions that require one-hop
reasoning only, so they are unable to generate multi-
hop reasoning.

Second, the QAAligned score is a framework
to extend any NLG metric to match the prediction
to the reference when they are different in size,

where we employed two well-established metrics
(BERTScore and MoverScore) as underlying met-
rics. Since those underlying metrics are already
proven to be effective (Zhang et al., 2019; Zhao
et al., 2019; Ushio et al., 2022), we have not con-
ducted any human annotation for QAG specifically.

Ethics Statement

While the QAG models are fine-tuned on pre-
trained language models, which are known to con-
tain some toxic contents (Schick et al., 2021), an
internal check does not reveal any toxic genera-
tion. However, there is a potential risk that the
QAG model could generate toxic text due to the
underlying LMs.

References

Max Bartolo, Tristan Thrush, Robin Jia, Sebastian
Riedel, Pontus Stenetorp, and Douwe Kiela. 2021.
Improving question answering model robustness with
synthetic adversarial data generation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8830–8848, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Johannes Bjerva, Nikita Bhutani, Behzad Golshan,
Wang-Chiew Tan, and Isabelle Augenstein. 2020.
SubjQA: A Dataset for Subjectivity and Review Com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5480–5494, Online. Association
for Computational Linguistics.

Carrino Casimiro Pio, Costa-jussa Marta R., and Fonol-
losa Jose A. R. 2019. Automatic Spanish Translation
of the SQuAD Dataset for Multilingual Question An-
swering. arXiv e-prints, page arXiv:1912.05200v1.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Danilo Croce, Alexandra Zelenanska, and Roberto
Basili. 2018. Neural learning for question answering
in italian. In AI*IA 2018 – Advances in Artificial
Intelligence, pages 389–402, Cham. Springer Inter-
national Publishing.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Baltimore, Maryland, USA. Association
for Computational Linguistics.

https://youtu.be/T6G-D9JtYyc
https://doi.org/10.18653/v1/2021.emnlp-main.696
https://doi.org/10.18653/v1/2021.emnlp-main.696
https://doi.org/10.18653/v1/2020.emnlp-main.442
https://doi.org/10.18653/v1/2020.emnlp-main.442
http://arxiv.org/abs/1912.05200v2
http://arxiv.org/abs/1912.05200v2
http://arxiv.org/abs/1912.05200v2
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348

Martin d’Hoffschmidt, Wacim Belblidia, Quentin
Heinrich, Tom Brendlé, and Maxime Vidal. 2020.
FQuAD: French question answering dataset. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1193–1208, Online. Association
for Computational Linguistics.

Pavel Efimov, Andrey Chertok, Leonid Boytsov, and
Pavel Braslavski. 2020. Sberquad–russian reading
comprehension dataset: Description and analysis.
In International Conference of the Cross-Language
Evaluation Forum for European Languages, pages
3–15. Springer.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question generation.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
609–617, Los Angeles, California. Association for
Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel.
2019. Unsupervised question answering by cloze
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4896–4910, Florence, Italy. Association for
Computational Linguistics.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-
ervini, Heinrich Küttler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021. PAQ: 65 mil-
lion probably-asked questions and what you can do
with them. Transactions of the Association for Com-
putational Linguistics, 9:1098–1115.

Seungyoung Lim, Myungji Kim, and Jooyoul Lee. 2019.
Korquad1. 0: Korean qa dataset for machine reading
comprehension. arXiv preprint arXiv:1909.07005.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

David Lindberg, Fred Popowich, John Nesbit, and Phil
Winne. 2013. Generating natural language questions
to support learning on-line. In Proceedings of the
14th European Workshop on Natural Language Gen-
eration, pages 105–114, Sofia, Bulgaria. Association
for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

John Miller, Karl Krauth, Benjamin Recht, and Ludwig
Schmidt. 2020. The effect of natural distribution
shift on question answering models. In International
Conference on Machine Learning, pages 6905–6916.
PMLR.

Timo Möller, Julian Risch, and Malte Pietsch. 2021.
Germanquad and germandpr: Improving non-english
question answering and passage retrieval.

Nedjma Ousidhoum, Zhangdie Yuan, and Andreas Vla-
chos. 2022. Varifocal question generation for fact-
checking. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 2532–2544, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa
Patwary, and Bryan Catanzaro. 2020. Training
question answering models from synthetic data. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5811–5826, Online. Association for Computa-
tional Linguistics.

Valentina Pyatkin, Paul Roit, Julian Michael, Yoav Gold-
berg, Reut Tsarfaty, and Ido Dagan. 2021. Asking
it all: Generating contextualized questions for any
semantic role. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1429–1441, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in NLP. Transactions of the

https://doi.org/10.18653/v1/2020.findings-emnlp.107
https://aclanthology.org/N10-1086
https://aclanthology.org/N10-1086
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1484
https://doi.org/10.18653/v1/P19-1484
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W13-2114
https://aclanthology.org/W13-2114
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
http://arxiv.org/abs/2104.12741
http://arxiv.org/abs/2104.12741
https://aclanthology.org/2022.emnlp-main.163
https://aclanthology.org/2022.emnlp-main.163
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.468
https://doi.org/10.18653/v1/2020.emnlp-main.468
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434

Association for Computational Linguistics, 9:1408–
1424.

ByungHoon So, Kyuhong Byun, Kyungwon Kang, and
Seongjin Cho. 2022. Jaquad: Japanese question an-
swering dataset for machine reading comprehension.
arXiv preprint arXiv:2202.01764.

Asahi Ushio, Fernando Alva-Manchego, and Jose
Camacho-Collados. 2022. Generative language mod-
els for paragraph-level question generation. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, Abu Dhabi,
U.A.E. Association for Computational Linguistics.

Asahi Ushio, Fernando Alva-Manchego, and Jose
Camacho-Collados. 2023. An empirical comparison
of lm-based question and answer generation methods.
In Proceedings of the 61th Annual Meeting of the
Association for Computational Linguistics, Toronto,
Canada. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Shiyue Zhang and Mohit Bansal. 2019. Address-
ing semantic drift in question generation for semi-
supervised question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2495–2509, Hong Kong,
China. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong

Figure 5: An overview of the hyper-parameter search
implemented as GridSearcher.

Kong, China. Association for Computational Lin-
guistics.

A Grid Search

To fine-tune LMs on QAG, one can use the
GridSearcher class of lmqg, which performs LM
fine-tuning with a two-stage optimization of hyper-
parameter, a set of parameters to be used at fine-
tuning such as learning rate or batch size, as de-
scribed in Figure 5. Let us assume that we want to
find an optimal combination of the learning rate and
random seed from a list of candidates [1e-4,1e-5]
and [0,1] for learning rate and random seed respec-
tively on QG as an example. We also assume a
training and a validation dataset to train a model
on the task and an evaluation score that reflects
a performance of a model (eg. BLEU4(Papineni
et al., 2002)), and we define a search-space as a set
including all the combinations of those candidates,
i.e. {(1e-4, 0), (1e-4, 1), (1e-5, 0), (1e-5, 1)}. The
goal of the GridSearcher is to find the best com-
bination to train a model on the training dataset for
the target task over the search-space with respect
to the evaluation score computed on the validation
dataset.

Brute-force approach such as to train model

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/D19-1253
https://doi.org/10.18653/v1/D19-1253
https://doi.org/10.18653/v1/D19-1253
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053

over every combination in the search-space can
be a highly-inefficient, so GridSearcher employs
a two-stage search method to avoid training for
all the combinations, while being able to reach
to the optimal combination as possible. To be
precise, given an epoch size L (epoch), the first
stage fine-tunes all the combinations over the
search-space, and pauses fine-tuning at epoch
M (epoch_partial). The top-K combinations
(n_max_config) are then selected based on the
evaluation score computed over the validation
dataset, and they are resumed to be fine-tuned until
the last epoch. Once the K chosen models are fine-
tuned at second stage, the best model is selected
based on the evaluation score, which is kept being
fine-tuned until the evaluation score decreases.

The dataset for training and validation can be any
datasets shared in the HuggingFace Hub, and one
can specify the input and the output to the model
from the column of the dataset by the arguments
input_types and output_types at instantiating
GridSearcher. For example, the following code
shows how we can fine-tune T5 (Raffel et al., 2020)
on question generation, a sub-task of QAG, with
SQuAD (Rajpurkar et al., 2016), where the dataset
lmqg/qg_squad is shared at https://huggingface.

co/datasets/lmqg/qg_squad on the HuggingFace
Hub, which has columns of paragraph_answer,
that contains a answer-highlighted paragraph, and
question, which is a question corresponding to
the answer highlighted in the paragraph_answer.
We choose them as the input and the output to
the model respectively by passing the name of
each column to the arguments, input_types and
output_types.

from lmqg import GridSearcher

instantiate the trainer
trainer = GridSearcher(

dataset_path="lmqg/qg_squad",
input_types="paragraph_answer",
output_types="question",
model="t5-large",
batch_size=128 ,
epoch=10,
epoch_partial=2,
n_max_config=3,
lr=[1e-4,1e-5],
random_seed=[0,1])

train model
trainer.train()

https://huggingface.co/datasets/lmqg/qg_squad
https://huggingface.co/datasets/lmqg/qg_squad

